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Sets

Abstract
Combinatorial reconfiguration studies how one solution of a combinatorial problem can be transformed into another. The
transformation can only make small local changes and may not leave the solution space. An important example is the
independent set reconfiguration (ISR) problem, where an independent set of a graph (a subset of its vertices without edges
between them) has to be transformed into another one by a sequence of modifications that remove a vertex or add another
that is not adjacent to any vertex in the set. The 1st Combinatorial Reconfiguration Challenge (CoRe Challenge 2022) was a
competition focused on the ISR problem. Our team participated with two solvers that model the ISR problem as a planning
problem and employ different planning techniques for solving it. They successfully competed in the challenge and were
awarded 4 first, 3 second, and 3 third places across 9 tracks. In this work, we present the ISR problem as a new problem to the
planning community and describe the planning techniques used in our solvers. We re-ran the entire competition under equal
computational conditions to allow for a fair comparison. Besides showcasing the success of planning technology, we hope
that this work will create a cross-fertilization of the two research fields.
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1. Introduction
Combinatorial reconfiguration studies the space of solu-
tions for combinatorial problems. The task is to trans-
form one solution of a combinatorial problem into a dif-
ferent one, without leaving the space of solutions. Each
transformation can only make a small local change to
the current solution. The term was coined by Ito et al.
[1] who show that there is a host of problems derived
from NP-complete (combinatorial) problems that fall into
the category of combinatorial reconfiguration problems
and that they are PSPACE-complete. Two prominent
examples for reconfiguration tasks are propositional sat-
isfiability [2] and graph 𝑘-coloring [3]. But probably
the most well-studied representative of combinatorial re-
configuration tasks is the independent set reconfiguration
(ISR) problem [4].

An independent set of a graph is a subset of its vertices
such that no two vertices of the subset share an edge.
Reconfiguring an independent set means replacing one
vertex in the subset with another one such that the new
subset is still an independent set. The ISR problem is to
find a sequence of such reconfiguration steps to reach a
given target configuration from a given start configura-
tion. The problem is PSPACE-complete [5], which means
it is as hard as automated planning [6].

The 1st Combinatorial Reconfiguration Challenge (CoRe
2022)1 is a competition that compares practical combina-
torial reconfiguration algorithms. Its first instantiation
targeted the ISR problem, featuring different tracks. We
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participated in the competition using two solvers that
model ISR problems as planning tasks and use various
planning techniques for solving them. Among the seven
teams that participated, our solvers achieved 4 first, 3
second, and 3 third places across all tracks, winning the
majority of awards.

In this work, we present the ISR problem and explain
how we can model it as a planning problem. We de-
scribe the technology used in our solvers, which is mostly
based on planning techniques, including a technique for
detecting unsolvable problems which we believe to be
useful for unsolvability planning in general. For space
considerations, we focus only on those tracks (i.e., the
“solver tracks”) where our approach relied heavily on
planning technology. Furthermore, since competitors
of the competition ran their solvers themselves using
different hardware and resource limits, we re-ran all of
them under equal computational conditions and report
the results in this work. Besides showcasing the success
of planning technology, we also introduce a problem that
is new to our community. We believe this will lead more
planning researchers to develop ideas for the ISR problem
and create a cross-fertilization of the fields.

2. Background
A graph is a pair 𝐺 = ⟨𝑉 , 𝐸⟩, where 𝑉 is a set of vertices
and 𝐸 ⊆ {{𝑢, 𝑣} ∣ 𝑢, 𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑢} is a set of edges between
the vertices. An independent (vertex) set of a graph 𝐺 is a
subset of vertices 𝐼 ⊆ 𝑉 such that no two vertices in the
subset 𝐼 are edges of 𝐺, i.e., for all 𝑣 , 𝑢 ∈ 𝐼 it holds that
{𝑣 , 𝑢} ∉ 𝐸.
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Figure 1: Visualization of the independent set reconfiguration
problem described in Example 1 with a graph consisting of five
nodes, two tokens depicted in black, the start independent set
𝐼𝑠 (left), and the target independent set 𝐼𝑡 (right).

2.1. Independent Set Reconfiguration
Similar to Kaminski et al. (2012), we consider an inde-
pendent set as a set of tokens placed on the vertices of
a graph 𝐺, called token configuration, such that no two
tokens are adjacent. The token jump reconfiguration rule
describes how to transform one token configuration into
another, moving a token from one vertex to any other un-
occupied vertex, so that the resulting configuration again
describes an independent set. Note that the token can
jump, i.e., it does not have to move along an edge. Given
the reconfiguration rule, we define a reconfiguration se-
quence 𝜌 = ⟨𝐼0, … , 𝐼𝑛⟩ as a sequence of non-repeating
independent sets, where each set 𝐼𝑖 with 1 ≤ 𝑖 ≤ 𝑛 results
from a single token jump from the previous set 𝐼𝑖−1. The
length |𝜌| of a reconfiguration sequence 𝜌 = ⟨𝐼0, … , 𝐼𝑛⟩ is
the number of token jumps inducing the sequence, i.e.,
|𝜌| = 𝑛. The Independent Set Reconfiguration decision
problem [4] is defined as follows.

Definition 1 (Independent Set Reconfiguration).
Given a graph 𝐺 and two independent sets 𝐼𝑠 and 𝐼𝑡, the
independent set reconfiguration (ISR) decision problem
is to determine whether there exists a reconfiguration
sequence 𝜌 = ⟨𝐼𝑠, … , 𝐼𝑡⟩.

The ISR problem is one of the most prominent repre-
sentatives of combinatorial reconfiguration. It is known
to be PSPACE-complete for general input graphs [4, 5]
and formed the central problem of CoRe 2022.

Example 1. Figure 1 shows an ISR problem with the
start set 𝐼𝑠 = {1, 3} and the target set 𝐼𝑡 = {2, 4}. A
solution to this problem is the reconfiguration sequence
𝜌 = ⟨{1, 3}, {3, 5}, {2, 5}, {2, 4}⟩, where first the token at node
1 is moved to node 5, then the token at node 3 is moved to
node 2, and finally the token at node 5 is moved to node
4. This sequence has a length of |𝜌| = 3, since it performs
three jumps and is the shortest sequence that solves the
problem.

2.2. Combinatorial Reconfiguration
Challenge

Similar to the International Planning Competition (IPC),
CoRe 2022 featured different tracks. They can be sepa-
rated into two main categories: graph tracks and solver
tracks.

Graph Tracks In the graph tracks the objective was
to construct an ISR instance such that the shortest re-
configuration sequence is as long as possible. For CoRe
2022 there were three graph tracks, one each for graphs
with 10, 50 and 100 nodes, and the team that constructed
the instance with the longest shortest reconfiguration
sequence won the respective track.

Solver Tracks In total, there were three different
solver tracks in CoRe 2022: the existent, the shortest and
the longest track, each further subdivided into a single
solver sub-track and a portfolio solver sub-track. In the
existent track, each solver that provided a reconfiguration
sequence for or detected unsolvability of an ISR instance
received one point. In contrast, the shortest and longest
tracks considered the quality of the solutions, and solvers
that provided the shortest/longest (among the partici-
pants) reconfiguration sequence for an instance received
one point.2 The winning solver for each track was the
one that received the most points across all benchmark
ISR instances.

Note that the names shortest and longest are somewhat
misleading. The aim in these tracks is to find a solution,
aiming at as short/long loopless solutions as possible, but
no guarantees on optimality are needed. To draw par-
allels between these tracks and International Planning
Competition (IPC) tracks, the shortest track is actually
more similar in that respect to the satisficing IPC track.
Currently, there is no equivalent in planning competi-
tions to the longest track. The existent track is somewhat
similar to the agile IPC track.

2.3. Classical Planning
In this paper, we propose to model the ISR problem as
a classical planning problem. For this, we consider the
Planning Domain Definition Language (PDDL) [7] and
the SAS+ formalism [8] to describe classical planning
problems. A (classical) planning problem is a concise
representation of a transition system with a single initial
state, a compact description of the set of goal states, and a
set of actions with preconditions and effects that describe
the transitions. The objective is to derive a course of
action that transforms the initial state into one of the

2Reconfiguration sequences must be non-repeating. Therefore,
participants must search for loopless solutions in the longest track.



( : a c t i o n move
: p a r ame t e r s ( ? l 1 ? l 2 − l o c )
: p r e c o n d i t i o n ( and

; Source has token
( tokened ? l 1 )
; D e s t i n a t i o n i s f r e e
( f r e e ? l 2 )
; De s t i n a t i on ' s ne i ghbo r s a r e f r e e
( f o r a l l ( ? l 3 − l o c ) ( imply

( and ( not ( = ? l 1 ? l 3 ) )
( edge ? l 2 ? l 3 ) )

( f r e e ? l 3 ) ) ) )
: e f f e c t ( and

; Source i s f r e e
( not ( tokened ? l 1 ) ) ( f r e e ? l 1 )
; D e s t i n a t i o n has token
( tokened ? l 2 ) ( not ( f r e e ? l 2 ) ) ) )

Listing 1: Single PDDL encoding using one move action.

goal states. While the full details of PDDL are beyond
the scope of this paper and are not necessary to follow
the content of the paper, the excerpts presented in this
paper suffice to present our contributions. For a more
detailed account, we refer the reader to Haslum et al.
(2019).

An SAS+ task formally is a tuple ⟨𝒱 ,𝒜 ,ℐ , 𝒢 ⟩, where
𝒱 is a finite set of variables 𝑉, each with a finite domain
dom(𝑉 ), 𝒜 is a finite set of actions, ℐ is the initial state,
and 𝒢 is the goal. Partial variable assignments 𝑝 map a
subset of variables vars(𝑝) ⊆ 𝒱 to values in their domain.
Variable assignments 𝑠 with vars(𝑠) = 𝒱 are called states.
A partial variable assignment 𝑝 is satisfied in a state 𝑠
if 𝑝 and 𝑠 agree on vars(𝑝). Each action 𝑎 ∈ 𝒜 consists
of a precondition pre(𝑎) and an effect eff(𝑎), both partial
variable assignments. An action is applicable in a state if
its precondition is satisfied, and applying it updates the
state with values defined in its effect. A planner finds a
sequence of actions that is sequentially applicable and
leads from the initial state ℐ to some state satisfying the
partial variable assignment 𝒢.

3. Planning Encoding
The planning domain definition language (PDDL) is

the de-facto standard language for modeling planning
tasks [9], and most planning tools are built with PDDL as
their input language. The ISR problem can be encoded in
PDDL by introducing a single lifted action tomove a token
from one location to another. Listing 1 shows the PDDL
code for this move action, with comments interleaved.
We call this the single encoding. While the encoding itself
is quite compact, grounding these tasks is slow. In an ISR
instance with 𝑛 nodes, 𝑛2 move actions have to be created.

( : a c t i o n p i ck
: p a r ame t e r s ( ? l 1 − l o c )
: p r e c o n d i t i o n ( and

; Not ho l d ing a token
( hand f r e e )
; Source has token
( tokened ? l 1 ) )

: e f f e c t ( and
; Hold ing a token
( not ( hand f r e e ) ) ( ho l d ing )
; Source i s f r e e
( f r e e ? l 1 ) ( not ( tokened ? l 1 ) ) ) )

( : a c t i o n p l a c e
: p a r ame t e r s ( ? l 1 − l o c )
: p r e c o n d i t i o n ( and

; Hold ing a token
( ho l d i ng )
; D e s t i n a t i o n i s f r e e
( f r e e ? l 1 )
; De s t i n a t i on ' s ne i ghbo r s a r e f r e e
( f o r a l l ( ? l 2 − l o c ) ( imply

( edge ? l 1 ? l 2 ) ( f r e e ? l 2 ) ) ) )
: e f f e c t ( and

; Not ho l d ing a token
( not ( ho l d i ng ) ) ( hand f r e e )
; D e s t i n a t i o n has token
( not ( f r e e ? l 1 ) ) ( tokened ? l 1 ) ) )

Listing 2: Split PDDL encoding using two actions.

As we are dealing with graphs of up to 40000 nodes, this
can be problematic. To overcome this issue, we tested two
approaches. The first is manual pre-grounding, called
single-grounded. This does not help with the quadratic
number of actions but avoids overhead creating the SAS+

representation. The second approach, called split, is to
split the move action into two actions, pick and place. It
is presented in Listing 2. In this encoding, we only need
2𝑛 actions but plans are twice as long and have to be post-
processed. Even this encoding can be slow to ground and
can be sped up significantly with pre-grounding, which
we call split-grounded. Ultimately, we found the split-
grounded encoding to be the most efficient, and so we
used it for all tracks and solvers.

The planning systems we used are all built on the Fast
Downward planning system [10], which first translates
the input PDDL into SAS+ [8] before searching for a plan.
While we used the aforementioned PDDL encodings for
the bulk of the development work for the contest, our
final submission directly encodes the input tasks into the
split SAS+ format to save on the computational effort
required by this translation.

We encode a given ISR problem ⟨𝐺, 𝐼𝑠, 𝐼𝑡⟩ with a graph
𝐺 = ⟨𝑉 , 𝐸⟩, as an SAS+ task ⟨𝒱 ,𝒜 ,ℐ , 𝒢 ⟩ in the follow-



ing way. The variables 𝒱 = 𝑉 ∪ {hand} contain one
binary variable for each node in the graph to represent
if there is a token on this node, and a binary variable
hand to represent if we are currently holding a token.
The domain of all variables is {free, occupied}. The initial
state is ℐ = {𝑣 ↦ occupied ∣ 𝑣 ∈ 𝐼𝑠} ∪ {𝑣 ↦ free ∣ 𝑣 ∈
𝑉 ⧵𝐼𝑠}∪{hand ↦ free}, and the goal is𝒢 = {𝑣 ↦ occupied ∣
𝑣 ∈ 𝐼𝑡} ∪ {𝑣 ↦ free ∣ 𝑣 ∈ 𝑉 ⧵ 𝐼𝑡} ∪ {hand ↦ free}. Note that
specifying the occupied nodes in the goal would also be
sufficient but specifying a value for all variables can help
the planners realize that there is exactly one goal state.

The actions are analogous to the ones shown in List-
ing 2. There is an action pick(𝑣) ∈ 𝒜 for every 𝑣 ∈
𝑉 and it has the precondition pre(pick(𝑣)) = {𝑣 ↦
occupied, hand ↦ free} and effect eff(pick(𝑣)) = {𝑣 ↦
free, hand ↦ occupied}. I.e., picking up a token is possi-
ble from all nodes that have a token, as long as we are
not already holding one. Additionally, there is an action
place(𝑣) ∈ 𝒜 for every 𝑣 ∈ 𝑉 and it has the precondition
pre(place(𝑣)) = {𝑣 ↦ free, hand ↦ occupied} ∪ {𝑣 ′ ↦
free ∣ {𝑣 , 𝑣 ′} ∈ 𝐸} and effect eff(place(𝑣)) = {𝑣 ↦
occupied, hand ↦ free}. So placing a held token is only
possible on positions that currently have no token and
have only free neighbors. The latter ensures every reach-
able configuration is an independent set.

4. Finding Solutions
We use sequential algorithm portfolios for each of the
three solver tracks. That is, we run a sequence of al-
gorithms, each with an associated time limit. The next
section describes the algorithms that we use in our se-
quential portfolios.

4.1. Planning Algorithms
After testing various planning heuristics from the litera-
ture in exploratory experiments, we found that landmark-
based heuristics to work well on ISR tasks. Relaxation-
based heuristics, such as FF [11] and Red-black [12] did
not contribute to search performance. Interestingly, both
for satisficing and optimal planning, it is best to combine
the landmark costs admissibly.

A∗+Landmarks We run an A∗ search [13] with a land-
mark count heuristic [14] that uses two different kinds
of landmarks: ℎ1 landmarks [15] and RHW landmarks
[16]. The landmark costs are combined with uniform
cost partitioning [17], which ensures that the resulting
heuristic is admissible. As a result, this algorithm is op-
timal, sound, and complete, i.e., if it reports a plan, this
is a shortest plan, if it reports unsolvability, the task is
indeed unsolvable, and given sufficient resources, it will
terminate.

GBFS+Landmarks We run a greedy best-first search
(GBFS) [18] with a landmark count heuristic [14] over ℎ1
landmarks [15]. Again, the landmark costs are combined
with uniform cost partitioning. This algorithm is sound
and complete, but not optimal.

Symbolic Search We run a forward symbolic blind
search [19, 20] using Binary Decision Diagrams [21] as
the underlying data structure. The symbolic planner we
use is SymK [22], which uses CUDD [23] as its decision
diagram library. This search is optimal, sound and com-
plete.

Symbolic Top-k Search The problem of finding a
plan that is as long as possible is not commonly consid-
ered in the planning community, but only in the context
of approximating the longest possible solution in SAT-
based planning [24]. Interestingly, the search for the
longest path in a compactly represented graph is NEXP-
TIME-hard [25] and is therefore considered more com-
plex than ordinary satisficing or optimal planning, which
are known to be PSPACE-hard [6]. Cohen et al. (2020)
investigated heuristic search for finding the longest path
for a given explicitly represented graph. While this is an
interesting line of research to be applied in the context of
planning, in the CoRe 2022 challenge we were interested
in finding a long plan, but not necessarily the longest.

To find long plans, we run a forward symbolic blind
search based on the algorithm SymK-LL [27], imple-
mented in the symbolic search planner SymK [22], which
iteratively finds and generates all loopless plans for a
task. However, we have made the following adjustments
to find long loopless plans. First, once we find a goal state
reachable with cost 𝑐, we reconstruct only one loopless
plan with cost 𝑐 and ignore all other plans with the same
cost. Second, since the split encoding introduces inter-
mediate states in which a token is held, we ignore these
artificial states when evaluating if a plan is loopless dur-
ing the plan reconstruction of SymK-LL. This algorithm
iteratively finds longer plans, starting with the shortest
one, and eventually finds the longest loopless plan, given
enough resources.

Counter Abstraction We abstract the problem to a
planning problem that counts how many tokens are in
certain positions and check for unsolvability in the ab-
straction. Since this algorithm is new, we describe it in
more detail in Section 4.6. We now describe our sequen-
tial algorithm portfolios. Our portfolio for the existent
track is identical to the one for the shortest track.



existent shortest longest CoRe 2022 limits

#c #e #c #e c score e score #c #e c score e score time mem cores
(s) (GB)

ReconfAIGERation 257 245 152 212 201.36 212.00 54 30 83.02 30.00 10000 128 4
junkawahara 122 144 110 128 110.00 128.00 21 29 44.16 55.87 600 32 1
PARIS 334 314 275 268 282.74 268.00 143 230 183.24 246.45 62610 16 32∗

telematik_tuhh 326 302 280 266 280.00 266.00 27 31 76.51 88.23 144000 60 2
toda5603 207 209 134 77 164.36 115.97 31 67 60.45 107.24 ∼ 10000 32 1
recongo 244 238 238 234 238.00 234.00 115 25 155.93 25.00 12600 96 1

Table 1
Coverage results from both the competition (c) and our experiments (e). # indicates the total number of problems solved or
found to be the shortest/longest. “score” refers to the IPC-style calculation over all of the problems (see text for further details).
The last column reports the limits used by the teams in the competition. If different limits were used in different tracks, we
report the maximum. Our solver mostly runs on 1 core but the MIP solver used by numerical abstractions used 32.

4.2. Portfolio for shortest and existent
Tracks

The competition enforced no resource constraints and
left it up to the competitors for how long they want
to run their solvers. We decided on the following time
limits for our portfolio based on some initial test that
showed diminishing returns for higher limits. If one step
in the portfoilo finds a solution, the remaining steps are
skipped.

1. Counter abstraction: 10 seconds
2. Symbolic search: 70 minutes
3. A∗+Landmarks: 70 minutes
4. GBFS+Landmarks: 70 minutes
5. Counter abstraction: 14 hours

Note that we use counter abstractions twice: first with
a small time limit at the start of the portfolio to handle
all cases where we can quickly prove unsolvability. Then
again with a large time limit after all other components
to catch unsolvable instances that are hard to prove un-
solvable.

4.3. Single Solver for shortest and existent
Tracks

We ran GBFS+Landmarks for 70 minutes as our single-
solver submission because it has the highest coverage
among all solvers in the portfolio.

4.4. Portfolio for longest Track
Our portfolio for the longest track ran two components:
(1) GBFS+Landmarks: 330 seconds; and (2) Symbolic
top-𝑘 search: 70 minutes. When GBFS+Landmarks finds
a solution, we use the cost of that solution as the lower
solution bound for the subsequent symbolic top-𝑘 search,
so that only solutions that are longer than the solution we
already have are reconstructed. As a fallback, if neither

⟨3, 0⟩ ⟨2, 1⟩⟨2, 1⟩ ⟨1, 2⟩ ⟨0, 3⟩

Figure 2: Example coloring for the counter abstraction ap-
proach. Top: initial state (left) and goal state (right). Nodes
are colored blue if they have a token in the initial state but
not the goal state and red if they have no token in the initial
state but a token in the goal state. Bottom: the abstract state
space. Dashed nodes are pruned.

of the two approaches produced a solution longer than
the shortest/existent tracks, we used the solution to the
shortest/existent tracks as a default.

4.5. Single Solver for longest Track
We ran symbolic top-𝑘 search for 70 minutes as our single-
solver submission for the longest track. Note that we
did not use the “fallback” option for this single-track
submission.

4.6. Counter Abstraction
The counter abstraction component of our solver tries
to detect if the task is unsolvable by abstracting it to a
planning problem that counts the number of tokes in
certain locations. This idea is inspired by counter ab-
stractions in the area of model checking (e.g., Wahl and
Donaldson 2010). Similar ideas where proposed in the
area of planning as well [29]. In model checking, counter
abstractions are usually used for symmetry reduction,
whereas we do not require the abstracted parts to be
symmetric to each other.



Given an ISR problem, we produce a coloring of the
vertices in the graph, i.e., a function that maps each vertex
of the graph to one color. Many different ways of coming
up with a good coloring are conceivable but we opted for
a simple strategy that uses up to four colors: one each
for nodes that

• contain a token both in the initial and in the goal
state;

• contain a token only in the initial but not in the
goal state;

• contain a token only in the goal but not in the
initial state;

• are empty in the initial and goal state.

Colors for situations that do not occur are not used.
For example, the task in Figure 2 only requires two colors.

Given a coloring, each original state can be abstracted
to a state with one counter variable per color that tracks
howmany tokens currently are on vertices with this color.
For example, the initial state in Figure 2 has 3 tokens on
blue nodes and 0 on red nodes, so it can be represented
as the state ⟨3, 0⟩. The goal has all three tokens on red
nodes and none on blue, so it can be represented by ⟨0, 3⟩.
Moving a token from a node colored 𝑐𝑖 to a node colored
𝑐𝑗 changes the abstract state from ⟨𝑐1, … , 𝑐𝑖, … , 𝑐𝑗, … , 𝑐𝑛⟩
to ⟨𝑐1, … , 𝑐𝑖 − 1,… , 𝑐𝑗 + 1,… , 𝑐𝑛⟩. The main observation is
that if any solution to the full problem exists, there has to
be a solution in the abstraction as well. We thus construct
the state space of the abstraction in the following way.

For a state 𝑠 = ⟨𝑐1, … , 𝑐𝑛⟩, we construct one succes-
sor for each pair of unique colors 𝑐𝑖 and 𝑐𝑗 that differs
from 𝑠 by a single token that moved from 𝑐𝑖 to 𝑐𝑗. In
our running example, the initial state ⟨3, 0⟩ has a single
successor ⟨2, 1⟩, and this state has two successors ⟨3, 0⟩
(which we skip because we have already seen this state)
and ⟨1, 2⟩. The latter state now has the abstract goal ⟨0, 3⟩
as a successor (Figure 2).

Whenever we generate a state, we check whether such
a state is possible (independent of whether it is reachable).
If it is not possible to place the tokens on the respective
colors in the required way, we do not have to consider
it or its successors. In our running example, the state
⟨1, 2⟩ is not realizable: no matter where we place the
blue token, it blocks two of the three red nodes. We
use a mixed-integer program (MIP) solver to test if a
state 𝑠 is realizable by checking if the following system
of constraints has a solution:

𝑥𝑖 + 𝑥𝑗 ≤ 1 for all edges ⟨𝑖, 𝑗⟩ in the graph

∑
𝑖∈𝑁𝑐

𝑥𝑖 ≥ 𝑠[𝑐] for all colors 𝑐

𝑥𝑖 ∈ {0, 1} for all nodes 𝑖,

where 𝑁𝑐 is the set of all nodes with color 𝑐 and 𝑠[𝑐] is
the amount of tokens that should have color 𝑐 in state 𝑠.

The abstract state 𝑠 is realizable iff the constraints have a
solution.

If we generate a state that matches the goal state (⟨0, 3⟩
in our example), we know that there is an abstract plan.
In this case, we still do not know if there is a real plan
and return unknown (this component of the solver is in-
complete). However, if there is no solution to the abstract
problem, there cannot be a solution to the original prob-
lem. The abstract state space is usually small enough to
explore completely. In our running example, it only has
4 states, and we only have to explore 3 of them, as we
prune state ⟨1, 2⟩.

While the MIP we use to check for realizability of
abstract states is specific to ISR, the rest of the technique
is domain-independent, and we will explore this further
in the future.

4.7. Other Competitors
Across all solver tracks, seven teams competed at CoRe
2022, including our team (PARIS). Three of them were
classified as portfolios: our portfolio, the submission by
Turau and Weyer (telematik_tuhh), and the one by Frol-
eyks, Yu, and Biere (ReconfAIGERation) in the existent
track.

The solver telematik_tuhh tackles the problem by
searching in the space of independent sets with two algo-
rithms running concurrently: an iterative deepening 𝐴∗

search using the number of misplaced tokens as heuristic
value for finding optimal solutions, and a breadth-first
search for detecting unsolvability. These algorithms are
enhanced by domain-specific successor generation and
memory optimization.

In the existent track ReconfAIGERation first trans-
forms the problem to circuits represented as and-inverter
graphs in the AIGER format [30], and then solves them
with ABC [31], a model checker that runs several algo-
rithms concurrently. In the other tracks it represents
tasks as SAT formulas encoding increasingly longer re-
configuration sequences. The resulting bounded model
checking problems are solved by the incremental SAT
solver CaDiCaL [32].

Among non-portfolio entries, the one by Yamada,
Kato, Kosuge, Takeuchi, and Banbara (recongo) achieved
strong results. They translate instances into answer set
programs and leverage clingo [33] as an off-the-shelf
solver. Toda (toda5603) employs a modular strategy by
initially running a greedy search and directly returning
its suboptimal solution upon success. If it does not reach
the goal, the problem is recast to a bounded model check-
ing task where the state reached by the search is the
initial state. This step is further informed by edge clique
covers computed by ECC [34] and solved by the bounded
model checker NuSMV [35].

Kawahara and Yamazaki (junkawahara) work with



families of independent sets, such as the initial indepen-
dent set, or the family of all independent sets. They
represent such families as zero-suppressed binary de-
cision diagrams [36] and generate successors using set
operations on ZDDs implemented using Graphillion [37].

Lastly, Blé, Cui, Wu, and Zhong (tigrisg) rely on a
state-action-reward-state-action approach. We refer to
Soh et al. [38] for the full solver descriptions.

5. Evaluation
In our experimental setup, we converted the docker im-
ages of each competing solver to singularity images (for
improved performance) and ran all solvers in a unified
setup with 2 hours timeout, 60 GB memory and 10 cores.
All evaluations were run on Intel Xeon Silver 4114 proces-
sors running at 2.2 GHz. We could not include team tigris
in the experiment since we could not run their docker
container, and their team lost contact with the person
who created it.

The shift in evaluation methodology is worth high-
lighting. In contrast with the contest parameters (where
competitors were welcome to run their methods on their
own hardware without any real resource constraints),
we wanted to have a uniform analysis of the various ap-
proaches. This mitigates any bias that may stem from one
team’s computing infrastructure being more formidable
than another. We can also see in the last columns of
Table 1 that teams allocated very different amounts of
resources to their solvers. By fixing one set of limits, we
might bias the results towards a solver but we tried to
select limits sufficiently high that all solvers can show
their strengths and we will analyze the performance for
lower time limits as well.

The first columns of Table 1 compare the coverage
results we obtained with the ones from the competition.
In most cases, coverage dropped compared to the com-
petition since the competition gave no restrictions on
resource usage and most submissions had a significantly
higher timeout. Team junkawahara is an exception with
only running their solver for 10 minutes for the competi-
tion, and gained 22 tasks when using a 2-hour time limit.
The portfolio approaches ReconfAIGERation, PARIS and
telematik_tuhh lost the most coverage in the existent
track, since their resource allocation was built for an in-
creased resource limit. However, the relative ordering of
performance among the solvers remains.

For the shortest and longest tracks, solvers only gained
coverage for a task if their solution was the best one
amongst all competitors. This makes an analysis be-
tween the competition and our evaluation difficult since
different best solutions might have been found. We note
that for shortest, ReconfAIGERation shows improved per-
formance, most likely because their submission used only

existent shortest longest

+ - + - + -

ReconfAIGERation 70 1 56 0 201 1
junkawahara 181 10 150 10 215 14
telematik_tuhh 22 10 10 8 200 1
toda5603 106 1 191 0 209 46
recongo 77 1 35 1 208 3

Table 2
Per-task comparison showing how often PARIS performed
better (+) or worse (-).

32GB of memory while we used 60GB. For longest, both
ReconfAIGERation and recongo dropped significantly
since they used a much higher time/memory limit in
the competition; while PARIS performed significantly
better. The latter is because in the competition, our sub-
mission for longest used the solutions from shortest as
a seed to find longer plans, and we accidentally passed
information that was processed incorrectly when we did
not find a solution for shortest. For this experiment, we
instead recomputed a (not necessarily shortest) plan in
the beginning and handled the case of no found plan
correctly.

We also included a scoring function that gives partial
points for finding some solution; for shortest it is the ratio
of the minimal reported solution and the found solution
(analogous to the quality score used in IPC), for longest
it is the ratio of the found solution and the maximal
reported solution. The score suggests that in shortest,
many solvers compute only minimal length solutions
since their score is identical to their coverage. The picture
is quite different for longest, showing that solvers that
performed poorly often did find a decently long solution
but not the longest overall.

Table 2 reports the number of tasks PARIS solved that
others did not (+) and vice versa (-). It shows that over-
all junkawahara is the most complimentary to our ap-
proach, with telematik_tuhh also solving some problems
we could not on existing and shortest, and toda5603 solv-
ing the most problems we did not on longest.

Figure 3 shows how many tasks each solver solves
within a given time limit. In most cases, many problems
are solved early on with more problems only trickling
in slowly. The exceptions are the portfolio approaches,
showing a sharp increase in coverage around the time
the next component is started. A more sophisticated
interleaving of the portfolio components could be used
to smooth this process.

Finally, we reran each component of our existent port-
folio separately to analyze their contribution. We re-
port for each component how many tasks it could solve
within 70 minutes and 16GB while none of the previ-
ous component solved it. Symbolic search alone solved
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223 problems, while A∗+Landmarks added another 45,
GBFS+Landmarks 16 more and finally the counter ab-
straction detected 39 problems as unsolvable. In the
competition we ran the counter abstraction for longer,
leading to 7 more problems detected unsolvable, bring-
ing the total coverage up to 330. The remaining differ-
ence from our competition result (334) is most likely due
to hardware differences and noise. We also compared
how many tasks could only be solved by a single ap-
proach: 15 for symbolic search, 0 for A∗+Landmarks, 16
for GBFS+Landmarks and 39 for the counter abstraction.
While A∗+Landmarks is dominated by GBFS+Landmarks,
it returns optimal solutions, making it an important con-
tributor for the shortest track. The counter abstraction
was invaluable for detecting unsolvable tasks, since no
other component could decide any of the tasks that were
solved by it.

6. Conclusions
In this paper, we introduced the independent set recon-
figuration problem, one of the most-studied problems of
combinatorial reconfiguration, as a testbed for planning
algorithms. We modeled this problem as a planning task

and adapted different planning techniques for solving
it, including a new technique for detecting unsolvable
ISR problems that we think can be generalized to unsolv-
ability planning in general. The resulting solvers partic-
ipated successfully in the 1st Combinatorial Reconfigu-
ration Challenge (2022), winning the majority of awards
in multiple tracks. We re-ran all solvers of the compe-
tition under equal computational conditions for a more
thorough analysis and investigated the strengths and
weaknesses of our planning-based solvers. Our findings
show that the independent set reconfiguration problem is
an interesting and challenging problem for planning, and
our algorithms are currently among the best approaches
for solving it. We believe these findings will lead more
planning researchers to develop ideas for the ISR problem
and create a cross-fertilization of the fields.
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