Odin: A Planner Based on Saturated Transition Cost Partitioning

Dominik Drexler, Jendrik Seipp, David Speck

Link&ping University, Link6ping, Sweden
(dominik.drexler, jendrik.seipp, david.speck) @liu.se

This planner abstract describes an optimal classical plan-
ner called Odin. Odin uses A* search (Hart, Nilsson, and
Raphael 1968) with an admissible heuristic (Pearl 1984)
based on abstraction heuristics and saturated transition cost
partitioning (Keller et al. 2016) to find optimal plans. Odin’s
main strength is in tasks where optimal plans contain the
same actions multiple times, which is often the case in trans-
portation domains.

Introduction

Odin is an optimal classical planner and implements a
new version of our work on subset-saturated transition
cost partitioning (Drexler, Speck, and Mattmiiller 2020;
Drexler, Seipp, and Speck 2021). The planner is built on
top of Fast Downward (Helmert 2006) and Scorpion (Seipp,
Keller, and Helmert 2020) and runs A* (Hart, Nilsson, and
Raphael 1968) with saturated transition cost partitioning
over two types of abstraction heuristics: 1. Cartesian abstrac-
tion heuristics over goal and landmark subtasks (Seipp and
Helmert 2018) computed with the batch refinement strat-
egy from Speck and Seipp (2022) and 2. Pattern databases
(Haslum et al. 2007) for systematic patterns.

Saturated Transition Cost Partitioning

Saturated transition cost partitioning is a method for admis-
sibly combining the information of a collection of abstrac-
tion heuristics (Keller et al. 2016; Drexler, Seipp, and Speck
2021). Given an ordered set of abstraction heuristics, it as-
signs to each heuristic a fraction of the remaining costs to
preserve its heuristic estimates, and leaves the remaining
costs for subsequent heuristics.

The remaining costs are represented as a transition cost
function t¢f : & x O — R that maps state-operator pairs
(i.e., transitions) to real-valued costs. Since the number of
transitions is exponential in the size of the input task, the per-
formance of the method depends heavily on a compact rep-
resentation of tcf. We use binary decision diagrams (BDDs)
(Bryant 1986) from the CUDD library (Somenzi 2015) to
compactly represent sets of states associated with the same
cost value.

A special case of a transition cost function is an operator
cost function ocf : O — R, which maps operators to real-
valued costs. Odin uses operator cost functions as a fallback

solution when using transition cost functions is too time or
memory intensive. More precisely, we use transition cost
functions when the number of transitions in an abstraction
heuristic is less than 40K.

The quality of a saturated cost partitioning heuristic de-
pends heavily on the order of the heuristics. Therefore, it is
beneficial to compute saturated cost partitionings over mul-
tiple orders and evaluates over the resulting estimates. Since
orders are optimized for a particular state, we compute new
orders in an online manner during the search (Seipp 2021).

Keeping the heuristic estimates of all states is sometimes
wasteful. Therefore, we preserve the heuristic estimates of
only the subset of states that are within a fixed perimeter
of the goal (Seipp and Helmert 2019). The perimeter is the
distance from the initial state to a goal in the abstraction. To
make subtraction of transition cost functions more efficient,
we also subtract no costs for transitions to unsolvable states
(Drexler, Seipp, and Speck 2021).

Operator Pruning Techniques

We use two operator pruning techniques, one as prepro-
cessing and one during the search. As preprocessing, after
grounding the input task, we apply the h? preprocessor from
Alcazar and Torralba (2015), which prunes spurious actions
and simplifies the task. During the search we use strong stub-
born set pruning (Alkhazraji et al. 2012; Wehrle and Helmert
2014; Roger et al. 2020). However, since the effectiveness of
strong stubborn set pruning depends strongly on the domain
and sometimes the computation does not pay off, we dis-
able the pruning if less than 20% of the successor states are
pruned after 1000 expansions.

Configurations

Odin uses a different configuration depending on the PDDL
language features that are present after grounding and sim-
plifying the task.

No Conditional Effects and No Axioms. Odin runs satu-
rated transition cost partitioning over CARTESIAN and SYS-
SCP abstraction heuristics.

Conditional Effects and No Axioms. Odin runs Scor-
pion’s saturated operator cost partitioning implementation
over the SYS-SCP abstraction heuristics. In principle, Odin



can be extended to work with conditional effects, but this
does not work out of the box because conditional effects in-
troduce an additional level of state dependency.

Axioms. Odin runs uniform cost search, i.e., A* with the
blind heuristic.

Post-competition Evaluation

Odin tied with Scorpion (Seipp 2023) for second place in
the optimal track of the 2023 International Planning Com-
petition, just behind the portfolio planner Ragnarok (Drexler
et al. 2023). In the following, we analyze the performance of
Odin and in particular compare its performance to saturated
operator cost partitioning.

Despite being awarded the second place with Scorpion,
Odin achieved slightly lower overall coverage (1 task) com-
pared to Scorpion, which uses saturated operator cost par-
titioning. The natural question is whether it paid off in the
competition to use the more expressive transition cost func-
tions over operator cost functions to get potentially more in-
formative heuristics at a higher computational cost. To an-
swer this question, we conducted a post-competition analy-
sis. For this analysis, we use the normalized domains where
available and exclude RUBIKS-CUBE since Odin does not
support conditional effects. This leaves us with six domains
of 20 tasks each. We compare Odin to a version of Odin that
uses operator cost functions, with all other components con-
figured identically.

Table 1 shows that both planners solve the same number
of tasks (62) in our post-competition experiments, and that
each solves one task that the other does not.

Table 2 compares their heuristic estimates for the initial
state and reveals that the estimates are almost always the
same. Saturated transition cost partitioning (STCP) com-
putes higher heuristic estimates for the initial state than sat-
urated operator cost partitioning (SOCP) in 5 tasks, while
the opposite is the case in 2 tasks.

Part of the reason for the similar performance is that
the STCP planner version often uses saturated operator
cost partitioning. Table 3 shows the fraction of abstraction
heuristics that used operator cost partitioning. We see that
in LABYRINTH, RECH.-ROBOTS-NORM and RICOCHET-
ROBOTS, STCP is (almost) never used. In SLITHERLINK-
NORM, only STCP was used (1.00) and yielded better es-
timates for the initial state. In QUANTUM-LAYOUT, STCP
was also heavily used (0.96) but this never resulted in better
heuristic estimates. Inspecting the found plans, we see that
none of them contains the same action multiple times. This
gives saturated transition cost partitioning fewer opportuni-
ties to successfully reuse costs in different contexts.

We conclude that, empirically, none of the algorithms out-
performs the other on the competition domains. Saturated
transition cost partitioning has worst-case exponential per-
formance, which makes it less robust on unseen tasks or
domains compared to saturated operator cost partitioning.
However, saturated transition cost partitioning has the po-
tential to produce more informative heuristics.

Domain SOCP STCP
FOLDING-NORM 8 8
LABYRINTH 3 3
QUANTUM-LAYOUT 13 14
RECH.-ROBOTS-NORM 13 13
RICOCHET-ROBOTS 19 18
SLITHERLINK-NORM 6 6
Overall 62 62

Table 1: Number of solved tasks by saturated operator
(SOCP) and saturated transition cost partitioning (STCP) in
the domains with neither conditional effects nor axioms.

Domain hSOCP > hSTCP hSOCP < hSTCP

FOLDING-NORM
LABYRINTH
QUANTUM-LAYOUT
RECH.-ROBOTS-NORM
RICOCHET-ROBOTS
SLITHERLINK-NORM

Overall

WINDOm=OOO
N oo OoOOO

Table 2: Comparison of the number of times that the heuris-
tic estimate for the initial state of saturated operator cost par-
titioning is larger than that of saturated transition cost parti-
tioning and vice versa.

. #STCP
Domain FSTCP+7SOCP
FOLDING-NORM 0.51
LABYRINTH 0.00
QUANTUM-LAYOUT 0.96
RECH.-ROBOTS-NORM 0.10
RICOCHET-ROBOTS 0.05
SLITHERLINK-NORM 1.00
Overall 0.14

Table 3: Fraction of abstraction heuristics that were com-
puted with saturated transition cost partitioning. The re-
maining heuristics were computed with saturated operator
cost partitioning.



Acknowledgments

We would like to thank all the contributors to Fast Down-
ward and Alvaro Torralba and Vidal Alcazar for the h? pre-
processor. Special thanks to Daniel Fiser and Florian Pom-
merening for organizing the competition.

This work was partially supported by the Wallenberg
Al, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. This
research was partially supported by TAILOR, a project
funded by the EU Horizon 2020 research and innovation
programme under grant agreement no. 952215. The com-
putations were enabled by resources provided by the Na-
tional Academic Infrastructure for Supercomputing in Swe-
den (NAISS) partially funded by the Swedish Research
Council through grant agreement no. 2022-06725.

References

Alcazar, V.; and Torralba, A. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Proc. ICAPS 2015, 2-6.

Alkhazraji, Y.; Wehrle, M.; Mattmiiller, R.; and Helmert, M.
2012. A Stubborn Set Algorithm for Optimal Planning. In
Proc. ECAI 2012, 891-892.

Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers,
35(8): 677-691.

Drexler, D.; Gnad, D.; Hoft, P.; Seipp, J.; Speck, D.; and
Stahlberg, S. 2023. Ragnarok. In Tenth International Plan-
ning Competition (IPC-10): Planner Abstracts.

Drexler, D.; Seipp, J.; and Speck, D. 2021. Subset-Saturated
Transition Cost Partitioning. In Proc. ICAPS 2021, 131-
139.

Drexler, D.; Speck, D.; and Mattmiiller, R. 2020. Subset-
Saturated Transition Cost Partitioning for Optimal Classical
Planning. In ICAPS Workshop on Heuristics and Search for
Domain-independent Planning, 23-31.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100-107.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern

Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007-1012.

Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191-246.

Keller, T.; Pommerening, F.; Seipp, J.; Geiler, F.; and
Mattmiiller, R. 2016. State-dependent Cost Partitionings for
Cartesian Abstractions in Classical Planning. In Proc. IJCAI
2016, 3161-3169.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Roger, G.; Helmert, M.; Seipp, J.; and Sievers, S. 2020. An
Atom-Centric Perspective on Stubborn Sets. In Proc. SoCS
2020, 57-65.

Seipp, J. 2021. Online Saturated Cost Partitioning for Clas-
sical Planning. In Proc. ICAPS 2021, 317-321.

Seipp, J. 2023. Scorpion 2023. In Tenth International Plan-
ning Competition (IPC-10): Planner Abstracts.

Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
JAIR, 62: 535-577.

Seipp, J.; and Helmert, M. 2019. Subset-Saturated Cost Par-
titioning for Optimal Classical Planning. In Proc. ICAPS
2019, 391-400.

Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. JAIR, 67: 129—
167.

Somenzi, F. 2015. CUDD: CU Decision Diagram Package
— Release 3.0.0. https://github.com/ivmai/cudd. Accessed:
2023-02-20.

Speck, D.; and Seipp, J. 2022. New Refinement Strategies
for Cartesian Abstractions. In Proc. ICAPS 2022, 348-352.
Wehrle, M.; and Helmert, M. 2014. Efficient Stubborn Sets:

Generalized Algorithms and Selection Strategies. In Proc.
ICAPS 2014, 323-331.



