
Counting and Reasoning with Plans
David Speck1, Markus Hecher2,3, Daniel Gnad4, Johannes K. Fichte4, Augusto B. Corrêa1,5

1University of Basel, Switzerland
2Univ. Artois, CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France

3CSAIL, Massachusetts Institute of Technology, United States
4Linköping University, Sweden

5University of Oxford, United Kingdom
davidjakob.speck@unibas.ch, hecher@mit.edu, {daniel.gnad,johannes.fichte}@liu.se, augusto.blaascorrea@chch.ox.ac.uk

Abstract

Classical planning asks for a sequence of operators reach-
ing a given goal. While the most common case is to com-
pute a plan, many scenarios require more than that. However,
quantitative reasoning on the plan space remains mostly un-
explored. A fundamental problem is to count plans, which re-
lates to the conditional probability on the plan space. Indeed,
qualitative and quantitative approaches are well-established
in various other areas of automated reasoning.
We present the first study to quantitative and qualitative rea-
soning on the plan space. In particular, we focus on polyno-
mially bounded plans. On the theoretical side, we study its
complexity, which gives rise to rich reasoning modes. Since
counting is hard in general, we introduce the easier notion of
facets, which enables understanding the significance of oper-
ators. On the practical side, we implement quantitative rea-
soning for planning. Thereby, we transform a planning task
into a propositional formula and use knowledge compilation
to count different plans. This framework scales well to large
plan spaces, while enabling rich reasoning capabilities such
as learning pruning functions and explainable planning.

Introduction
The overarching objective of classical planning is to find a
plan, i.e., a sequence of operators, that transforms the cur-
rent state into a goal state. While in some scenarios a single
plan is sufficient, in others, it may not be clear which plan
is preferable based on the description of the planning task.
To address this, solvers like top-k or top-quality planners
have been developed to enumerate the k shortest plans or all
plans up to a certain length bound allowing for post hoc con-
sideration of the plan space and selection (Katz et al. 2018;
Katz and Sohrabi 2020; Speck, Mattmüller, and Nebel 2020;
von Tschammer, Mattmüller, and Speck 2022; Chakraborti
et al. 2024). Although this paradigm has been successfully
applied in practical areas such as malware detection (Boddy
et al. 2005) and scenario planning for risk management
(Sohrabi et al. 2018), it remains an indirect method for rea-
soning about the plan space of a planning task.

Considering fundamental problems in computer science,
such as the propositional satisfiability problem (SAT), an-
swer set programming (ASP), and constraint satisfaction

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problems (CSP), more directed reasoning schemes exist
that are anchored around counting. The most prominent
and canonical counting problem is #SAT, also called model
counting, which asks to compute the number of models of a
formula. While #SAT is considered computationally harder
than asking whether a single model exists (SAT), it also al-
lows for automated reasoning about the solution space (Dar-
wiche 2001; Darwiche and Marquis 2002). Recent compe-
titions illustrate that, despite high computational complex-
ity, state-of-the-art solvers are effective in practice (Fichte,
Hecher, and Hamiti 2021). Due favorable reasoning power
and vast applications, counting techniques have been ex-
tended to other fields (Aziz et al. 2015; Fichte et al. 2017;
Hahn et al. 2022; Eiter, Hecher, and Kiesel 2024).

In this paper, we bridge the gap between model count-
ing and classical planning by introducing a new framework
for reasoning and analyzing plan space. To do so, we con-
sider all plans for a given planning task with polynomially
bounded length, consistent with the approach used in top-
quality planning (Katz and Sohrabi 2020).

Contributions Our main contributions are as follows:

1. We introduce a taxonomy of counting and reason-
ing problems for classical planning with polynomially
bounded plan lengths and establish the computational
complexity of these problems.

2. We identify a class of reasoning problems on the plan
space, called facet reasoning, that are as hard as poly-
nomially bounded planning and thus can be solved more
efficiently than counting problems.

3. We present a practical tool, Planalyst, that builds on
existing planning and knowledge compilation techniques
to answer plan-space reasoning queries and demonstrate
its practical feasibility.

In more detail, on the theoretical side, we formally de-
fine a taxonomy of counting and reasoning problems for
planning and analyze the computational complexity of these
problems. Among other results, we show that the problem
of probabilistic reasoning about the plan space such as de-
termining how many plans contain a given operator is CP

=-
complete, which is considered computationally harder than
counting the number of plans, known to be #P-complete
(Speck, Mattmüller, and Nebel 2020). We also introduce the

notion of facet reasoning in the context of planning, which
has origins in computational complexity (Papadimitriou and
Yannakakis 1982) and is well studied in ASP (Alrabbaa,
Rudolph, and Schweizer 2018; Fichte, Gaggl, and Rusovac
2022). We show that facet reasoning in planning is NP-
complete, and thus probably much simpler than counting
the number of plans. This theoretical result is significant be-
cause it allows more efficient answers to complex reasoning
queries about the plan space, such as identifying which oper-
ators can complement a given partial plan and which provide
more flexibility for further complementation.

On the practical side, we present a solution to the studied
counting and reasoning problems by transforming a plan-
ning task into a propositional formula, where satisfying as-
signments correspond one-to-one to plans, followed by sub-
sequent knowledge compilation into a d-DNNF (Darwiche
and Marquis 2002). We implement this as a tool called
Planalyst, which builds on existing tools from planning
(Rintanen 2014) and knowledge compilation (Lagniez and
Marquis 2017; Sundermann et al. 2024) and thus readily al-
lows plan counting and automated reasoning in plan space.
Empirically, we compare Planalyst to state-of-the-art top-
quality planners on the computationally challenging prob-
lem of counting plans, and show that our tool performs fa-
vorably, especially when the plan space is large and reason-
ing over trillions of plans is critical. Finally, by constructing
a d-DNNF, our approach not only supports plan counting,
but can also answer reasoning questions such as conditional
probability, faceted reasoning, and unbiased uniform plan
sampling, all through efficient d-DNNF queries.

Related Work
Darwiche and Marquis (2002) detailed the theoretical capa-
bilities and limitations of normal forms in knowledge com-
pilation. Established propositional knowledge compilers are
c2d (Darwiche 1999) and d4 (Lagniez and Marquis 2017),
new developments are extensions of SharpSAT-TD (Kiesel
and Eiter 2023). Incremental and approximate counting has
been considered for ASP (Kabir et al. 2022; Fichte et al.
2024). In SAT and ASP, advanced enumeration techniques
have also been studied (Masina, Spallitta, and Sebastiani
2023; Spallitta, Sebastiani, and Biere 2024; Gebser, Kauf-
mann, and Schaub 2009; Alviano et al. 2023), which can
be beneficial for counting if the number of solutions is suf-
ficiently low or when (partial) solutions need to be materi-
alized. Exact uniform sampling using knowledge compila-
tion has also been implemented (Lai, Meel, and Yap 2021).
Model counting has been applied to probabilistic planning in
the past (Domshlak and Hoffmann 2007). In classical plan-
ning and grounding, Corrêa et al. (2023) argued that ground-
ing is infeasible for some domains if the number of oper-
ators in a planning task is too high. Therefore, they man-
ually employed model counting, but did not develop ex-
tended reasoning techniques or counting tools for planning.
Fine-grained reasoning modes and facets have been studied
for ASP (Alrabbaa, Rudolph, and Schweizer 2018; Fichte,
Gaggl, and Rusovac 2022; Fichte, Hecher, and Nadeem
2022; Rusovac et al. 2024; Eiter et al. 2024) and significance
notions based on facets (Böhl, Gaggl, and Rusovac 2023).

Preliminaries
We assume that the reader is familiar with basics of proposi-
tional logic (Kleine Büning and Lettmann 1999) and compu-
tational complexity (Papadimitriou 1994). Below, we follow
standard definitions (Bylander 1994; Speck, Mattmüller, and
Nebel 2020) to summarize basic notations for planning.

Basics For an integer i, we define [i] := {0, 1, . . . , i}.
We abbreviate the domain of a function f : D → R
by dom(f). By f−1 : R → D we denote the inverse func-
tion f−1 := {f(d) → d | d ∈ dom(f)} of function f , if it
exists. Let σ = ⟨s1, s2, . . . , sℓ⟩ be a sequence, then we write
s ∈ σ if s = si for some 1 ≤ i ≤ ℓ and

`
(σ) the set of

elements that occur in σ, i.e.,
`
(σ) := {s | s ∈ σ}. For a

propositional formula F , we abbreviate by vars(F) the vari-
ables that occur in F and by Mod(F) the set of all models
of F and the number of models by #(F) := |Mod(F)|.
Computational Complexity We follow standard termi-
nology in computational complexity (Papadimitriou 1994)
and the Polynomial Hierarchy (PH) (Stockmeyer and Meyer
1973; Stockmeyer 1976; Wrathall 1976). The complexity
class DP captures the (independent) combination of an NP
and a coNP problem, i.e., DP := {L1 ∩ L2 | L1 ∈
NP, L2 ∈ coNP} (Papadimitriou and Yannakakis 1982).
Class PP (Gill 1977) refers to those decision problems that
can be characterized by a nondeterministic Turing machine,
such that the positive instances are those where at least 1/2
of the machine’s paths are accepting. Counting class #P
captures counting problems that can be solved by counting
the number of accepting paths of a nondeterministic Turing
machine (Valiant 1979). Class CP

= (Fenner et al. 1999) refers
to decision problems that can be characterized via nondeter-
ministic Turing machines where positive instances are those
with the same number of accepting and rejecting paths.

Classical Planning A planning task is a tuple Π =
⟨A,O, I,G⟩, where A is a finite set of propositional state
variables. A (partial) state s is a total (partial) mapping s :
A → {0, 1}. For a state s and a partial state p, we write
s |= p if s satisfies p, more formally, p−1(0) ⊆ s−1(0)
and p−1(1) ⊆ s−1(1). O is a finite set of operators, where
each operator is a tuple o = ⟨preo, effo⟩ of partial states,
called preconditions and effects. An operator o ∈ O is ap-
plicable in a state s if s |= preo. Applying operator o to
state s, sJoK for short, yields state s′, where s′(a) := effo(a),
if a ∈ dom(effo) and s′(a) := s(a), otherwise. Finally, I is
the initial state of Π and G a partial state called goal condi-
tion. A state s∗ is a goal state if s∗ |= G. Let Π be a planning
task. A plan π = ⟨o0, . . . , on−1⟩ is a sequence of applica-
ble operators that generates a sequence of states s0, . . . , sn,
where s0 = I, sn is a goal state, and si+1 = siJoiK for
every i ∈ [n − 1]. Furthermore, we let π(i) := oi and de-
note by |π| the length of a plan π. We denote the set of all
plans by Plans(Π) and the set of all plans of length at most ℓ
by Plansℓ(Π) and call it occasionally plan space as done in
the literature (Russell and Norvig 1995).

A plan π is optimal if there is no plan π′ ∈ Plans(Π)
where |π′| < |π|. The notion naturally extends to bounded-
length plans. Deciding or counting plans is computationally

Name Given Task Compl. Ref.

POLY-BOUNDED-PLAN-EXIST Π, ℓ π ∈ Plansℓ(Π) NP-c [1]
POLY-BRAVE-PLAN-EXIST Π, ℓ, o ∃π ∈ Plansℓ(Π) : o ∈ π NP-c Lem. 6
POLY-CAUTIOUS-PLAN-EXIST Π, ℓ, o ∀π ∈ Plansℓ(Π) : o ∈ π coNP-c Lem. 6
POLY-BOUNDED-TOP-K-EXIST Π, ℓ |Plansℓ | ≥ k PP-h [2]
#POLY-BOUNDED-PLAN Π, ℓ |Plansℓ | #P-c [2]
POLY-PROBABILISTIC-REASON Π, ℓ, Q, p Pℓ[Π, Q] = p CP

=-c Thm. 9

FACETREASON Π, ℓ, o o ∈ Fℓ(Π) NP-c Thm. 10
ATLEAST-K-FACETS Π, ℓ, k |Fℓ(Π)| ≥ k NP-c Lem. 11
ATMOST-K-FACETS Π, ℓ, k |Fℓ(Π)| ≤ k coNP-c Cor. 12
EXACT-K-FACETS Π, ℓ, k |Fℓ(Π)| = k DP-c Thm. 13

Table 1: Computational Complexity of Qualitative and Quantitative Reasoning Problems. We let Π be a planning task, ℓ ∈ N0

with ℓ ≤ poly(Π), o ∈ O, k ∈ No, 0 ≤ p ≤ 1, and Q a query. [1]: (Bylander 1994), [2]: (Speck, Mattmüller, and Nebel 2020).

s0 s1

s2

s3 s∗

s⊥

wake-up

ge
t-r

ea
dy

go-to-AAAI

go-to-AAAI

give-talk

sle
ep

Figure 1: State space of our running example task Π1. The
initial state is denoted by s0; the goal state is denoted by s∗.

hard. More precisely, the BOUNDED-PLAN-EXIST prob-
lem, which asks to decide whether there exists a plan of
length at most ℓ, is PSPACE-complete (Bylander 1994).
The #BOUNDED-PLAN problem, which asks to output the
number of plans of length at most ℓ, remains PSPACE-
complete (Speck, Mattmüller, and Nebel 2020). We say that
a plan is polynomially bounded if we restrict the length to
be polynomial in the instance size, i.e., the length ℓ of Π is
bounded by ℓ ≤ ∥Π∥c for some constant c, where ∥Π∥ is the
encoding size of Π. For a planning problem P with input ℓ
that bounds the length of a plan, we abbreviate by POLY-P
the problem P where ℓ is polynomially bounded. Then, the
complexity drops. POLY-BOUNDED-PLAN-EXIST is NP-
complete (Bylander 1994) and #POLY-BOUNDED-PLAN is
#P-complete, and the decision problem POLY-BOUNDED-
TOP-K-EXIST is PP-hard, which asks to decide, given in
addition an integer k, whether there are at least k different
plans of length up to ℓ (Speck, Mattmüller, and Nebel 2020).
Example 1 (Running Example). Consider a planning
task Π1 consisting of a scenario with a slightly chaotic re-
searcher, who has to wake up and give a talk at AAAI. De-
pending on how late they are, they can go straight to the talk
without any preparation. However, they could also spend
time getting ready. Less pleasant to the audience, they could
also continue sleeping and not give the talk at all. Figure 1
illustrates the state space. The initial state is s0, and the
single goal state is s∗. The labels in each edge identify the
operator being applied. We can easily identify two plans:
(i) wake-up; get-ready; go-to-AAAI; give-talk.

(ii) wake-up; go-to-AAAI; give-talk.

Plan (i) has length 4, while Plan (ii) has length 3. Observe
that action sleep does not appear in any plan.

Landmarks A fact landmark is a state variable that occurs
in every plan (Porteous, Sebastia, and Hoffmann 2001). An
operator landmark is an operator that occurs in every plan
(Richter, Helmert, and Westphal 2008; Karpas and Domsh-
lak 2009). We can extend these notions to bounded land-
marks where we assume bounded length ℓ.

Example 2. Consider planning task Π1 from Example 1. We
observe that wake-up, go-to-AAAI, and give-talk are oper-
ator landmarks.

Planning as Satisfiability (SAT) Let Π = ⟨A,O, I,G⟩ be
a planning task and ℓ > 0 an integer to bound the length of
a potential plan. We can employ a standard technique to en-
code finding a plan into a propositional formula and ask for
its satisfiability (SAT) (Kautz and Selman 1992; Rintanen
2012). In more detail, we can construct a formula F plan

≤ℓ [Π]
whose models are in one-to-one correspondence with the ℓ-
bounded plans of Π. For space reasons, we present only the
core idea. The variables are as follows: vars(F plan

≤ℓ) = {ai |
a ∈ A, i ∈ [ℓ]}} ∪ {oi | o ∈ O, i ∈ [ℓ]}. Variable ai indi-
cates the value of state variable a at the i-th step of the plan.
Hence, if M ∈ Mod(F plan

≤ℓ [Π]) and aℓ ∈ M , then state vari-
able a has value 1 after applying operators o0, . . . , oℓ−1 to
the initial state. We assume sequential encodings, where the
following constraints hold.

1. a set of clauses encoding the value of each state variable
at the initial state;

2. a set of clauses encoding the value of each state variable
in the goal condition;

3. a set of clauses guaranteeing that no two operators are
chosen at the same step; and

4. a set of clauses guaranteeing the consistency of state vari-
ables after an operator is applied. If oi is true and the
effect of operator o makes a true, then ai+1 must be true.

Since plans might be shorter than ℓ, we move “unused”
steps to the end using the formula

∧
i∈[ℓ](

∧
o∈O ¬oi →

∧
o∈O ¬oi+1), which encodes that if no operator was as-

signed at step i, then no operator can be assigned at step i+1.
Thereby, we obtain a one-to-one mapping between models
of F plan

≤ℓ [Π] and l-bounded plans for the task.

From Qualitative to Quantitative Reasoning
Classical planning aims at finding one plan or enumerating
certain plans. But what if we want plans that contain a cer-
tain operator, or to count the number of possible plans given
certain assumptions, or if we want to identify the frequency
of an operator among all possible plans? Currently, there is
no unified reasoning tool to deal with these types of ques-
tions. We introduce more detailed qualitative and quantita-
tive reasoning modes for planning and analyze its complex-
ity. We start with two extreme reasoning modes that consider
whether an operator is part of some or all plans.
Definition 3. Let Π = ⟨A,O, I,G⟩ be a planning task, o ∈
O an operator, and ℓ an integer. We define the
• brave operator by BOℓ(Π) :=

⋃
π∈Plansℓ(Π)

`
(π) and

• cautious operator by COℓ(Π) :=
⋂

π∈Plansℓ(Π)

`
(π).

The problem POLY-BRAVE-PLAN-EXIST asks to decide
whether o ∈ BOℓ(Π). The problem POLY-CAUTIOUS-
PLAN-EXIST asks to decide whether o ∈ COℓ(Π).

Note that we use
`
(·) to convert sequences into sets, as

we aim only for an operator occurring at any time-point.
Remark 4. Our definition of cautious operators is similar
to operator landmarks (Zhu and Givan 2003), but for plans
with up to a given bounded length.
Example 5. Consider task Π1 from Example 1 and Plans (i)
and (ii). Furthermore, let ℓ = 4. Then, the brave and cau-
tious operators of our task are the following:

BOℓ(Π1) = {wake-up, get-ready, go-to-AAAI, give-talk},
COℓ(Π1) = {wake-up, go-to-AAAI, give-talk}.

Operator get-ready is brave but not cautious, as it appears in
Plan (i) but not in Plan (ii). Operator sleep is neither brave
nor cautious, as it does not appear in any plan.

Lemma 6 (⋆1). The problem POLY-BRAVE-PLAN-EXIST
is NP-complete and the problem POLY-CAUTIOUS-PLAN-
EXIST is coNP-complete.

To find brave operators in practice, we can employ a stan-
dard SAT (Audemard and Simon 2018) or ASP solver (Geb-
ser et al. 2011, 2014; Alviano et al. 2015). For cautious op-
erators, we can employ a dedicated backbone solver (Biere,
Froleyks, and Wang 2023) or again ASP solvers.

Probability Reasoning
Both problems POLY-BRAVE-PLAN-EXIST and POLY-
CAUTIOUS-PLAN-EXIST give rise to extreme reasoning
modes on plans. Cautious reasoning is quite strict and so
unlikely to hold in general. Brave reasoning is too general
and permissive, and thus quite weak in practice. Figure 2 il-
lustrates the two reasoning modes and a more fine-grained

1We prove statements marked by “⋆” in the extended version.

brave

0 < p ≤ 1

probability

p ∈ [0, 1]

cautious

p = 1

Figure 2: Quantitative reasoning is a fine-grained reasoning
mode between brave and cautious reasoning. It asks whether
a literal matches ≥ p·100% of the plans for planning task Π.

mode, which we introduce below. This new mode asks
whether the conditional probability of an operator is above a
given threshold. It generalizes the known POLY-BOUNDED-
TOP-K-EXIST planning problem, which only asks whether
at least k plans exists. The crucial ingredient is counting the
number of possible plans and relating them to the number
of possible plans which contain a given operator. More for-
mally: Let Π = ⟨A,O, I,G⟩ be a planning task, o be an
operator. We abbreviate the set of all plans of Π contain-
ing o by Plansℓ(Π, o) := {π | π ∈ Plansℓ(Π), o ∈ π}.
Then, we define the conditional probability of o in plans
of Π by Pℓ[Π, o] :=

|Plansℓ(Π,o)|
max(1,|Plansℓ(Π)|) . Note that the usage

of max prevents division by zero in case of no possible plan.
Analogously, we can talk about operator o in position i by
replacing o ∈ π with o = π(i). With the help of conditional
probability, we can define a fine-grained reasoning mode.

To be more flexible, we define a query Q as a proposi-
tional formula in conjunctive normal form (CNF) and as-
sume its meaning as expected. We let Q contain variables
corresponding to the set A of state variables, the set O
of operators, as well as of states and operators in posi-
tion i (similar to F plan

≤ℓ
). Let π ∈ Plansℓ(Π) be a plan with

π = ⟨o0, . . . , on−1⟩ that generates sequence s0, . . . , sn. π
satisfies a variable v ∈ A if there is some i ∈ [ℓ] such that
si(v) = 1; satisfies an operator o ∈ O if there is some i ∈ [ℓ]
such that π(i) = o, analogously for fixed time-points i.
Then, π satisfies ¬v if π does not satisfy v. A plan π satisfies
a clause C in Q, if π satisfies one of its literals; π satisfies Q,
denoted π |= Q, if it satisfies every clause in Q. We define
Plansℓ(Π, Q) := {π | π ∈ Plansℓ(Π), π |= Q}.
Definition 7 (Probability Reasoning). Let Π = ⟨A,O, I,G⟩
be a planning task, ℓ > 0 be an integer, Q be a query,
and 0≤p≤1 with p ∈ Q. Then, probability reasoning on Q

asks if Pℓ[Π, Q] = p, where Pℓ[Π, Q] := |Plansℓ(Π,Q)|
max(1,|Plansℓ(Π)|) .

Example 8 (Probability Reasoning). Again, consider plan-
ning task Π1 from Example 1 and let ℓ = 4. Take the follow-
ing probability reasoning queries: (i) Pℓ[Π1,wake-up] = 1,
(ii) Pℓ[Π1, get-ready] = 0.5, and (iii) Pℓ[Π1, sleep] = 0.
Reasoning (i) illustrates that the researcher must always use
operator wake-up to reach a goal; (ii) indicates that get-
ready occurs in half of the plans; (iii) allows us to conclude
that no plan uses operator sleep. More complex queries
might ask for the probability of a plan containing both wake-
up and sleep, or at least one of them:

Pℓ[Π1,wake-up ∧ sleep] = 0,
Pℓ[Π1,wake-up ∨ sleep] = 1.

Probability reasoning can be achieved by counting twice,
which is computationally hard. In more detail, we obtain:

Theorem 9 (⋆). The problem POLY-PROBABILISTIC-
REASON is CP

=-complete.

Faceted Reasoning
Above, we introduced three different reasoning modes,
namely brave, probability, cautious reasoning. Unfortu-
nately the most precise reasoning mode —the probability
mode— is the computational most expensive one and re-
quires to count plans. Therefore, we turn our attention to
reasoning that is less hard than probabilistic reasoning and
allows us still to filter plans and quantify uncertainty among
plans. We call this reasoning faceted reasoning following
terminology from combinatorics (Papadimitriou and Yan-
nakakis 1982) and ASP (Alrabbaa, Rudolph, and Schweizer
2018). At the heart of these tasks is a combination of brave
and cautious reasoning. These are particularly useful if we
want to develop plans gradually/incrementally to see at a
given time point, which operators are still possible or have
the biggest effect. We focus on operators that belong to some
(brave) but not to all plans (cautious).

More formally, for a planning task Π and an integer ℓ,
we let F+

ℓ (Π) := BOℓ(Π) \ COℓ(Π) and call the elements
of F+

ℓ (Π) inclusive facets. In addition, we distinguish ex-
cluding facets F−

ℓ (Π), which indicate that operators are not
part of a plan. More formally, we let F−

ℓ := {¬o | o ∈
F+(Π)} and define the set Fℓ(Π) of all facets by Fℓ(Π) :=
F+

ℓ (Π) ∪ F−
ℓ (Π). Interestingly, a facet p ∈ {o,¬o} is di-

rectly related to uncertainty, since the operator o can either
be included in or be excluded from a plan. When we en-
force that a facet p ∈ {o,¬o} is present in a plan, which
we abbreviate by Π[p], we immediately reduce uncertainty
on operators among the plans. Based on this understand-
ing, we define the notion of significance for a planning
task Π = ⟨A,O, I,G⟩ and an operator o ∈ O:

Sℓ(Π, o) :=
|Fℓ(Π)| − |Fℓ(Π[o])|

|Fℓ(Π)|
.

Note that the notion of significance is particularly interest-
ing when we already have a prefix ωk = ⟨o0, . . . , ok⟩ and are
interested in plans that complete the prefix. Here, facets can
assist in understanding which operator is the most significant
for the next step or some step in the future. Furthermore, we
can include state variables into significance notations with-
out effect on the complexity. We omit these cases from the
presentation due to space constraints and readability of our
introduced notion.

Computational Aspects of Facets
Next, we study the computational complexity for problems
related to facets. We limit ourselves to including facets, as-
sume the case where an operator occurs in some step, and we
omit prefixes in the following. These restrictions have only
a negligible effect on the complexity. We start with a natu-
ral reasoning problem: The FACETREASON problem asks,
given a planning task Π and an operator o ∈ O, to decide
whether o ∈ F(Π). We start with a lower and upper bound
on the FACETREASON problem.

Theorem 10 (⋆). Let Π be a planning task and o ∈ O. The
problem FACETREASON is NP-complete.

Next, we look into counting facets and first observe that
the number of facets is bound by 0 ≤ |F(Π)| ≤ |O| for
a planning task Π. Therefore, we consider a parameterized
version by taking a bound k on the number of facets as input.
Then, the problem EXACT-K-FACETS asks, given a planning
task Π and an integer k, to decide whether |F(Π)| = k.
Before, we look into upper and lower bounds by the prob-
lems ATLEAST-K-FACETS and ATMOST-K-FACETS, which
ask whether |F(Π)| ≥ k and |F(Π)| ≤ k, respectively.

Lemma 11 (⋆). Let Π be a planning task, and ℓ ∈ N, k ∈ N0

be integers. ATLEAST-K-FACETS is NP-complete.

Corollary 12 (⋆). Let Π be a planning task, ℓ ∈ N, k ∈ N0.
Then, the problem ATMOST-K-FACETS is coNP-complete.

Both results together yield DP-completeness.

Theorem 13 (⋆). Let Π be a program, and ℓ ∈ N, k ∈ N0 be
integers. The problem EXACT-K-FACETS is DP-complete.

Discussion: Applications of Plan Reasoning
Our new reasoning modes offer a rich framework to query
the solution space of planning tasks. In Remark 4, we dis-
cussed the connection between landmarks and cautious rea-
soning. Similarly, with brave and cautious reasoning it is
easy to answer questions such as “does operator o appear on
any plan?”, or “does partial state p occur on any trajectory?”

The expressiveness of the queries goes way beyond and
can be leveraged in many existing planning techniques. For
example, determining the set of operators that are always
or never part of a plan is important for learning pruning
functions (Gnad et al. 2019). We can generalize these more
global queries to reason about operators being only (never)
applied in states that satisfy certain conditions, which is es-
sential for learning policies (Krajnanský et al. 2014; Bonet
and Geffner 2015). Furthermore, brave and cautious reason-
ing can be helpful for model debugging, offering a conve-
nient tool to find out if an operator expected to occur in a
plan does in fact never appear (Lin, Grastien, and Bercher
2023; Gragera et al. 2023). In over-subscription planning
(Smith 2004), we can determine the achievability of soft
goals or compute the achievable maximum set of soft goals
by answering multiple queries. This can be utilized in ex-
plainable planning, providing reasons for the absence of so-
lutions that achieve the desired set of soft goals (Eifler et al.
2020; Krarup et al. 2021). We can even generalize the notion
of soft goals to desired state atoms that are achieved along a
plan, but which might no longer hold in the goal.

With faceted reasoning, we are able to answer plan-space
queries without actually counting the number of solutions.
This reduces the complexity of answering queries to NP-
completeness, making reasoning much more practically us-
able. What makes facet reasoning particularly interesting is
that it allows to efficiently answer conditional queries, such
as “if I want operator o to occur at step k, how much choice
is left for the remaining operators?”. Similar to previous

work in ASP, facet reasoning allows for an interactive query-
ing mode in which users can gain insights about the partic-
ular solution space of a planning task (Fichte, Gaggl, and
Rusovac 2022). For tasks with a large set of plans that can-
not possibly be navigated manually, facets offer the possibil-
ity to systematically navigate the solution space, narrowing
down the set of plans by committing to desired operators.
The Planalyst tool, which we describe in more detail in
the next section, enables this form of interactive exploration
in the context of classical planning.

Empirical Evaluation
We implemented our reasoning framework for classical
planning as a tool called Planalyst. Therefore, we trans-
form planning tasks into SAT formulas based on the
Madagascar planner (Rintanen 2011, 2014). To efficiently
carry out counting, we use d4 (Lagniez and Marquis 2017;
Audemard, Lagniez, and Miceli 2022), which compiles (po-
tentially large) formulas into a specialized normal form
called d-DNNF (Darwiche and Marquis 2002), enabling fast
reasoning. Finally, we reason over the plan space via count-
ing queries using the ddnnife reasoner (Sundermann et al.
2024), which works in poly-time on d-DNNFs.

Experimental Setup
We focus on solving #BOUNDED-PLAN, i.e., counting the
number of plans, which is the computationally hardest prob-
lem studied above. This allows us to address all reason-
ing questions discussed, including computing conditional
probabilities. For each task of the benchmark set, we de-
fined an upper bound by collecting known bounds from
planning.domains (Muise 2016) and running winning
planners from the most recent International Planning Com-
petitions (IPC) (Taitler et al. 2024). In the experiments,
we count plans of length up to a multiplicative factor c ∈
{1.0, 1.1, 1.2, 1.3, 1.4, 1.5} of the collected upper bounds.
We consider two different configurations for our approach:
Count, which only counts the number of plans, and Enum,
which additionally enumerates all plans, resulting in a novel
top-quality planner for classical planning with unit opera-
tor costs. For comparison, we have chosen two top-quality
planners, K∗ (Katz et al. 2018) and SymK (Speck, Mattmüller,
and Nebel 2020), both of which can be readily used to count
the number of plans as they enumerate them, and both of
which are considered to scale well to large numbers of plans.
We ran both baseline planners in their recommended con-
figurations2: K∗, which implements orbit-space search (Katz
and Lee 2023) with the landmark-cut heuristic (Helmert and
Domshlak 2009), and SymK, which implements a variant of
bidirectional symbolic search (Torralba et al. 2017). For enu-
meration approaches (K∗, SymK, Enum), we let these solvers
enumerate the plans only internally to avoid writing billions
(or more) of plans to the disk. All experiments ran on Intel
Xeon Silver 4114 processors running at 2.2 GHz. We used
a time limit of 30 minutes and a memory limit of 6 GiB per
task. Our benchmarks include all optimal planning domains

2We disabled a default optimization that removes operators
causally irrelevant to the goal, as it prunes valid plans.

Coverage #Plans
Length
Bound K

∗

S
y
m
K

E
n
u
m

C
o
u
n
t

M
ax

M
ea

n

M
ed

ia
n

× 1.0 351 309 253 335 >1015 >1013 >102

× 1.1 289 231 182 300 >1015 >1013 >104

× 1.2 212 173 130 251 >1015 >1013 >105

× 1.3 177 135 101 210 >1018 >1015 >105

× 1.4 142 112 77 189 >1021 >1018 >106

× 1.5 112 91 61 170 >1021 >1018 >106

Table 2: (Left): Coverage, i.e., the number of tasks where
the number of plans within a multiplicative factor of a
length bound was found by K∗, SymK, and our SAT-based ap-
proaches, Count and Enum. Count only counts plans, while
Enum additionally enumerates them. (Right): Statistics on
the number of plans in the benchmark set, considering the
length bound determined by the four solvers.

from IPCs 1998-2023 with unit operator costs and without
conditional effects or axioms. Source code, benchmarks, and
data are available online (Speck et al. 2024).

Overall Performance
Table 2 (left) compares the coverage, i.e., the number of
tasks for which different approaches can determine the num-
ber of plans, for different multiplicative length bounds. K∗
has the best coverage for a length bound of 1.0. Our enu-
meration approach, Enum, ranks overall last, although being
able to solve a notable number of tasks by first creating a d-
DNNF, followed by a subsequent enumeration query for all
models, and finally mapping them to actual plans. For the 1.0
bound, our counting approach Count performs worse than
K∗, but has better coverage than the SymK planner. When
considering higher length bounds, the counting approach,
Count, has the highest coverage. The gap between Count
and the other approaches gets larger as the length bound
increases. This can be explained by the increasing number
of plans, see Table 2 (right), where enumeration becomes
less feasible due to the large plan space. This highlights
the usefulness of our approach for sampling or reasoning
in tasks with huge plan spaces. For example, in scenarios
where end-users want to understand the plan space, enumer-
ating over a sextillion (1021) different plans is infeasible, but
counting them (and using the related reasoning) is possible.
Moreover, a decent performance with larger bounds gives
us more flexibility for problems where a good bound is not
easily available but an over-approximation is, e.g., using a
non-admissible heuristic to come up with a bound.

Domain-Wise Performance
Table 3 shows a domain-wise comparison of the different ap-
proaches for the two extreme bounds in our experiments, 1.0
and 1.5. For both bounds, the performance differs a lot de-
pending on the domain. Our SAT-based approach performs
particularly well in the blocksworld and psr-small domains
in both cases. In blocksworld, the largest task that we could
still solve had 1.5 · 109 plans, while in psr-small the largest

Bound: ×1 Bound: ×1.5

Domains K
∗

S
y
m
K

E
n
u
m

C
o
u
n
t

K
∗

S
y
m
K

E
n
u
m

C
o
u
n
t

airport (49) 7 7 7 11 7 7 6 11
barman (14) 3 0 0 0 0 0 0 0
blocks (35) 28 31 29 33 9 8 7 15
childsnack (20) 0 0 0 0 0 0 0 0
depot (22) 4 2 2 3 0 0 0 1
driverlog (20) 10 8 6 8 1 1 1 2
freecell (80) 15 13 5 5 0 0 0 0
grid (5) 2 2 1 1 1 0 0 1
gripper (20) 3 2 2 3 1 1 0 2
hiking (20) 4 3 1 7 0 0 0 1
logistics (63) 9 6 4 13 1 1 0 3
miconic (150) 39 35 31 39 14 13 10 24
movie (30) 2 2 0 30 0 0 0 30
mprime (35) 22 20 22 23 12 7 2 9
mystery (19) 16 14 14 15 11 8 7 9
nomystery (20) 14 13 8 8 5 2 1 4
organic (16) 7 7 0 0 7 7 0 0
parking (40) 3 1 0 0 0 0 0 0
pipes-nt (46) 16 11 10 12 2 1 1 3
pipe-t (45) 9 7 5 8 2 1 1 2
psr-small (50) 46 44 41 48 14 14 8 24
quantum (20) 10 8 9 9 2 1 1 2
rovers (40) 4 4 4 4 0 0 0 4
satellite (36) 5 5 5 6 1 1 0 1
snake (20) 6 5 1 1 2 0 0 0
storage (29) 16 15 12 12 7 6 5 7
termes (20) 5 6 2 2 0 0 0 0
tidybot (40) 20 10 4 5 1 1 1 1
tpp (30) 5 4 4 5 3 3 3 4
visitall (40) 12 16 16 16 5 5 5 6
zenotravel (20) 9 8 8 8 4 3 2 4

Sum (1094) 351 309 253 335 112 91 61 170

Table 3: Coverage per domain, i.e., number of tasks per do-
main where the number of plans within a factor 1.0 or 1.5 of
a cost bound was found by K∗, SymK, and our SAT-based ap-
proaches, Count and Enum. Count only counts plans, while
Enum outputs each plan.

solved task had 8.9 · 1012. In contrast, K∗ could only count
up to a 10 million plans in these domains.

The SAT-based approach is less effective in other do-
mains. One reason is that they are less specialized than
heuristic and symbolic search approaches to optimal plan-
ning. Among other factors, the sequential encoding is not
concise enough for some tasks and bounds (e.g., airport),
or the grounding algorithm of Madagascar is inferior to
those of other planners built on top of the FastDownward
grounder (Helmert 2006, 2009), making it impossible to
ground certain tasks (e.g., organic-synthesis). It would be in-
teresting to evaluate how other encodings perform (Rintanen
2012), but that brings the additional problem of losing the
one-to-one correspondence between plans and SAT models.

For 1.5, counting is more feasible than enumeration in
many domains: as the number of plans increases, enumer-
ation becomes less practical. Counting works for many rea-

soning tasks, e.g., those based on conditional probabilities.

Beyond Counting
As illustrated above, our Planalyst tool effectively counts
plans by compiling into a d-DNNF and performing a count-
ing query. This method can not only answer conditional
probability questions, such as the quantity of an opera-
tor in plans, but also addresses other reasoning questions
more directly and efficiently through d-DNNF queries us-
ing ddnnife (Sundermann et al. 2024). Consider reason-
ing questions about the plan space of a given planning task,
while respecting a cost bound. Given the d-DNNF represent-
ing the plan space, questions about brave and cautious oper-
ators can be answered directly, even without traversing the
entire d-DNNF, when the number of plans is known (Sun-
dermann et al. 2024). This can be achieved by traversing
the literal nodes of the d-DNNF and collecting the back-
bone variables, i.e., the variables that are always true (core)
or false (dead). In addition, given the d-DNNF, it is possi-
ble to uniformly sample plans without enumerating the full
set by d-DNNF traversing with ddnnife. This allows to ad-
dress planning biases when selecting plans (Paredes et al.
2024; Frank et al. 2024) and thus collect unbiased training
data for different learning approaches (Shen, Trevizan, and
Thiébaux 2020; Areces et al. 2023; Chen, Thiébaux, and
Trevizan 2024; Bachor and Behnke 2024). We omit empir-
ical results for these queries, as their overhead is negligi-
ble once the d-DNNF is constructed. Our experiments with
the Count configuration of Planalyst have shown that this
construction is feasible for many planning tasks.

Conclusion and Future Work
We count plans and reason in the solution space, which
is orthogonal to previous works in planning (Katz et al.
2018; Speck, Mattmüller, and Nebel 2020; Katz and Sohrabi
2020). Moreover, we reason about the plan space in the form
of queries and introduce faceted reasoning to planning al-
lowing for questions on the significance of operators. Al-
though faceted reasoning is computationally hard (NP-c),
it is, under standard theoretical assumptions, significantly
more efficient than counting the number of plans (#P-c).
Finally, we present our new reasoning tool, Planalyst,
which can count the number of plans assuming fixed given
length. It also supports different plan space queries. In gen-
eral, Planalyst is competitive with state-of-the-art top-k
planners and outperforms all other methods when the plan
space is too large, i.e., more than 10 million plans.

In the future, we plan to integrate Planalyst into other
pipelines, such as goal recognition (Mirsky, Keren, and Geib
2021), grounding via learning (Gnad et al. 2019), and task
rewriting (Areces et al. 2014; Elahi and Rintanen 2024),
using counting and facet reasoning for guidance. Interest-
ing topics for considerations could be to deal with incon-
sistencies (Ulbricht 2019) and certifying results (Alviano
et al. 2019; Fichte, Hecher, and Roland 2022) as well as ex-
plaining reasoning behind decisions (Cabalar, Fandinno, and
Muñiz 2020). We will study how our framework extends to
other encodings, such as parallel operator encodings (Rinta-
nen 2012) or lifted encodings (Höller and Behnke 2022).

Acknowledgements
Authors are ordered in reverse alphabetical order. David
Speck was funded by the Swiss National Science Founda-
tion (SNSF) as part of the project “Unifying the Theory and
Algorithms of Factored State-Space Search” (UTA). Hecher
was supported by the Austrian Science Fund (FWF), grants
J 4656 and P 32830, the Society for Research Funding in
Lower Austria (GFF, Gesellschaft für Forschungsförderung
NÖ), grant ExzF-0004, as well as the Vienna Science and
Technology Fund (WWTF), grant ICT19-065. The work has
been carried out while Hecher visited the Simons Institute at
UC Berkeley. Fichte was funded by ELLIIT funded by the
Swedish government.

References
Alrabbaa, C.; Rudolph, S.; and Schweizer, L. 2018. Faceted
Answer-Set Navigation. In RuleML+RR 2018.
Alviano, M.; Dodaro, C.; Fichte, J. K.; Hecher, M.; Philipp, T.; and
Rath, J. 2019. Inconsistency Proofs for ASP: The ASP - DRUPE
Format. Theory Pract. Log. Program., 19(5-6).
Alviano, M.; Dodaro, C.; Fiorentino, S.; Previti, A.; and Ricca, F.
2023. ASP and subset minimality: Enumeration, cautious reason-
ing and MUSes. AIJ, 320.
Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015. Advances
in WASP. In LPNMR 2015.
Areces, C.; Bustos, F.; Dominguez, M. A.; and Hoffmann, J. 2014.
Optimizing Planning Domains by Automatic Action Schema Split-
ting. In ICAPS 2014.
Areces, F.; Ocampo, B.; Areces, C.; Domı́nguez, M.; and Gnad, D.
2023. Partial Grounding in Planning using Small Language Mod-
els. In ICAPS 2023 Workshop on Knowledge Engineering for Plan-
ning and Scheduling.
Audemard, G.; Lagniez, J.; and Miceli, M. 2022. A New Exact
Solver for (Weighted) Max#SAT. In SAT 2022, 28.
Audemard, G.; and Simon, L. 2018. On the Glucose SAT Solver.
Int. J. Artif. Intell. Tools, 27(1): 27.
Aziz, R. A.; Chu, G.; Muise, C.; and Stuckey, P. 2015. Stable
Model Counting and Its Application in Probabilistic Logic Pro-
gramming. In AAAI 2015.
Bachor, P.; and Behnke, G. 2024. Learning Planning Domains
from Non-redundant Fully-Observed Traces: Theoretical Founda-
tions and Complexity Analysis. In AAAI 2024.
Biere, A.; Froleyks, N.; and Wang, W. 2023. CadiBack: Extracting
Backbones with CaDiCaL. In SAT 2023,3.
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course of
Action Generation for Cyber Security Using Classical Planning. In
ICAPS 2005.
Böhl, E.; Gaggl, S. A.; and Rusovac, D. 2023. Representative An-
swer Sets: Collecting Something of Everything. In ECAI 2023.
Bonet, B.; and Geffner, H. 2015. Policies that Generalize: Solving
Many Planning Problems with the Same Policy. In IJCAI 2015.
Bylander, T. 1994. The Computational Complexity of Proposi-
tional STRIPS Planning. AIJ, 69(1–2).
Cabalar, P.; Fandinno, J.; and Muñiz, B. 2020. A System for Ex-
plainable Answer Set Programming. Electronic Proceedings in
Theoretical Computer Science, 325.
Chakraborti, T.; Kang, J.; Fuggitti, F.; Katz, M.; and Sohrabi, S.
2024. Interactive Plan Selection Using Linear Temporal Logic,
Disjunctive Action Landmarks, and Natural Language Instruction.
In AAAI 2024.

Chen, D. Z.; Thiébaux, S.; and Trevizan, F. 2024. Learning
Domain-Independent Heuristics for Grounded and Lifted Planning.
In AAAI 2024.
Corrêa, A. B.; Hecher, M.; Helmert, M.; Longo, D. M.; Pommeren-
ing, F.; and Woltran, S. 2023. Grounding Planning Tasks Using
Tree Decompositions and Iterated Solving. In ICAPS 2023.
Darwiche, A. 1999. Compiling Knowledge into Decomposable
Negation Normal Form. In IJCAI 1999.
Darwiche, A. 2001. Decomposable Negation Normal Form. JACM,
48(4).
Darwiche, A.; and Marquis, P. 2002. A Knowledge Compilation
Map. JAIR, 17.
Domshlak, C.; and Hoffmann, J. 2007. Probabilistic Planning via
Heuristic Forward Search and Weighted Model Counting. JAIR,
30.
Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and Stein-
metz, M. 2020. A New Approach to Plan-Space Explanation: Ana-
lyzing Plan-Property Dependencies in Oversubscription Planning.
In AAAI 2020.
Eiter, T.; Fichte, J. K.; Hecher, M.; and Woltran, S. 2024. Epistemic
Logic Programs: Non-Ground and Counting Complexity. In IJCAI
2024.
Eiter, T.; Hecher, M.; and Kiesel, R. 2024. aspmc: New frontiers
of algebraic answer set counting. AIJ, 330.
Elahi, M.; and Rintanen, J. 2024. Optimizing the Optimization
of Planning Domains by Automatic Action Schema Splitting. In
AAAI 2024.
Fenner, S. A.; Green, F.; Homer, S.; and Pruim, R. 1999. Determin-
ing Acceptance Possibility for a Quantum Computation is Hard for
the Polynomial Hierarchy. ECCC, TR99-003.
Fichte, J. K.; Gaggl, S. A.; Hecher, M.; and Rusovac, D. 2024. IAS-
CAR: Incremental Answer Set Counting by Anytime Refinement.
Theory Pract. Log. Program., 24(2).
Fichte, J. K.; Gaggl, S. A.; and Rusovac, D. 2022. Rushing and
Strolling among Answer Sets – Navigation Made Easy. In AAAI
2022.
Fichte, J. K.; Hecher, M.; and Hamiti, F. 2021. The Model Count-
ing Competition 2020. ACM Journal of Experimental Algorith-
mics, 26(13).
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2017. An-
swer Set Solving with Bounded Treewidth Revisited. In LPNMR
2017.
Fichte, J. K.; Hecher, M.; and Nadeem, M. A. 2022. Plausibil-
ity Reasoning via Projected Answer Set Counting - A Hybrid Ap-
proach. In IJCAI 2022.
Fichte, J. K.; Hecher, M.; and Roland, V. 2022. Proofs for Propo-
sitional Model Counting. In SAT 2022, 30.
Frank, J.; Paredes, A.; Benton, J.; and Muise, C. 2024. Bias in Plan-
ning Algorithms. In ICAPS Workshop on Reliable Data-Driven
Planning and Scheduling (RDDPS).
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T. 2014.
Clingo = ASP + Control: Preliminary Report. arXiv:1405.3694
[cs.PL].
Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011. Ad-
vances in gringo Series 3. In LPNMR 2011.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. Solution Enumer-
ation for Projected Boolean Search Problems. In CPAIOR 2009.
Gill, J. 1977. Computational Complexity of Probabilistic Turing
Machines. SICOMP, 6(4).

Gnad, D.; Torralba, Á.; Domı́nguez, M. A.; Areces, C.; and Bustos,
F. 2019. Learning How to Ground a Plan – Partial Grounding in
Classical Planning. In AAAI 2019.

Gragera, A.; Fuentetaja, R.; Olaya, Á. G.; and Fernández, F. 2023.
A Planning Approach to Repair Domains with Incomplete Action
Effects. In ICAPS 2023.
Hahn, S.; Janhunen, T.; Kaminski, R.; Romero, J.; Rühling, N.; and
Schaub, T. 2022. Plingo: A System for Probabilistic Reasoning in
Clingo Based on LP MLN . In RuleML+RR 2022.
Helmert, M. 2006. The Fast Downward Planning System. JAIR,
26.
Helmert, M. 2009. Concise Finite-Domain Representations for
PDDL Planning Tasks. AIJ, 173.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical Paths
and Abstractions: What’s the Difference Anyway? In ICAPS 2009.
Höller, D.; and Behnke, G. 2022. Encoding Lifted Classical Plan-
ning in Propositional Logic. In ICAPS 2022.
Kabir, M.; Everardo, F. O.; Shukla, A. K.; Hecher, M.; Fichte, J. K.;
and Meel, K. S. 2022. ApproxASP - a Scalable Approximate An-
swer Set Counter. In AAAI 2022.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning with
Landmarks. In IJCAI 2009.
Katz, M.; and Lee, J. 2023. K* Search Over Orbit Space for Top-k
Planning. In IJCAI 2023.
Katz, M.; and Sohrabi, S. 2020. Reshaping Diverse Planning. In
AAAI 2020.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A Novel
Iterative Approach to Top-k Planning. In ICAPS 2018.
Kautz, H.; and Selman, B. 1992. Planning as Satisfiability. In
ECAI 1992.
Kiesel, R.; and Eiter, T. 2023. Knowledge Compilation and More
with SharpSAT-TD. In KR 2023.
Kleine Büning, H.; and Lettmann, T. 1999. Propositional logic –
deduction and algorithms, volume 48 of Cambridge tracts in theo-
retical computer science. Cambridge University Press.
Krajnanský, M.; Hoffmann, J.; Buffet, O.; and Fern, A. 2014.
Learning Pruning Rules for Heuristic Search Planning. In ECAI
2014.
Krarup, B.; Krivic, S.; Magazzeni, D.; Long, D.; Cashmore, M.;
and Smith, D. E. 2021. Contrastive Explanations of Plans through
Model Restrictions. JAIR, 72.
Lagniez, J.; and Marquis, P. 2017. An Improved Decision-DNNF
Compiler. In IJCAI 2017.
Lai, Y.; Meel, K. S.; and Yap, R. H. C. 2021. The Power of Literal
Equivalence in Model Counting. In AAAI 2021.
Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards Automated
Modeling Assistance: An Efficient Approach for Repairing Flawed
Planning Domains. In AAAI 2023.
Masina, G.; Spallitta, G.; and Sebastiani, R. 2023. On CNF Con-
version for Disjoint SAT Enumeration. In SAT 2023, 15.
Mirsky, R.; Keren, S.; and Geib, C. W. 2021. Introduction to Sym-
bolic Plan and Goal Recognition. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publish-
ers.
Muise, C. 2016. Planning.Domains. In ICAPS 2016 System
Demonstrations and Exhibits.
Papadimitriou, C. H. 1994. Computational Complexity. Addison-
Wesley.

Papadimitriou, C. H.; and Yannakakis, M. 1982. The Complexity
of Facets (and Some Facets of Complexity). In STOC 1982.
Paredes, A.; Frank, J.; Benton, J.; and Muise, C. 2024. Planning
Bias: Planning as a Source of Sampling Bias. In ICAPS Workshop
on Reliable Data-Driven Planning and Scheduling (RDDPS).
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the Extrac-
tion, Ordering, and Usage of Landmarks in Planning. In ECP
2001.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks Re-
visited. In AAAI 2008.
Rintanen, J. 2011. Madagascar: Scalable Planning with SAT. In
IPC 2011 Planner Abstracts.
Rintanen, J. 2012. Planning as Satisfiability: Heuristics. AIJ, 193.
Rintanen, J. 2014. Madagascar: Scalable Planning with SAT. In
IPC-8 Planner Abstracts.
Rusovac, D.; Hecher, M.; Gebser, M.; Gaggl, S. A.; and Fichte,
J. K. 2024. Navigating and Querying Answer Sets: How Hard Is It
Really and Why? In KR 2024.
Russell, S.; and Norvig, P. 1995. Artificial Intelligence — A Mod-
ern Approach. Prentice Hall.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning Domain-
Independent Planning Heuristics with Hypergraph Networks. In
ICAPS 2020.
Smith, D. E. 2004. Choosing Objectives in Over-Subscription Plan-
ning. In ICAPS 2004.
Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018. An AI
Planning Solution to Scenario Generation for Enterprise Risk Man-
agement. In AAAI 2018.
Spallitta, G.; Sebastiani, R.; and Biere, A. 2024. Disjoint Partial
Enumeration without Blocking Clauses. In AAAI 2024.
Speck, D.; Hecher, M.; Gnad, D.; Fichte, J. K.; and Corrêa, A. B.
2024. Code, benchmarks and data for the AAAI 2025 paper
“Counting and Reasoning with Plans”. https://doi.org/10.5281/
zenodo.14499686.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic Top-k
Planning. In AAAI 2020.
Stockmeyer, L. J. 1976. The Polynomial-Time Hierarchy. Theoret-
ical Computer Science, 3(1).
Stockmeyer, L. J.; and Meyer, A. R. 1973. Word problems requir-
ing exponential time. In STOC 1973.
Sundermann, C.; Raab, H.; Hess, T.; Thüm, T.; and Schaefer, I.
2024. Reusing d-DNNFs for Efficient Feature-Model Counting.
ACM Trans. Softw. Eng. Methodol.
Taitler, A.; Alford, R.; Espasa, J.; Behnke, G.; Fišer, D.; Gimelfarb,
M.; Pommerening, F.; Sanner, S.; Scala, E.; Schreiber, D.; Segovia-
Aguas, J.; and Seipp, J. 2024. The 2023 International Planning
Competition. AI Magazine.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S. 2017.
Efficient Symbolic Search for Cost-optimal Planning. AIJ, 242.
Ulbricht, M. 2019. Understanding Inconsistency – A Contribution
to the Field of Non-monotonic Reasoning. Ph.D. thesis, Universität
Leipzig.
Valiant, L. G. 1979. The Complexity of Computing the Permanent.
Theoretical Computer Science, 8.
von Tschammer, J.; Mattmüller, R.; and Speck, D. 2022. Loopless
Top-K Planning. In ICAPS 2022.
Wrathall, C. 1976. Complete Sets and the Polynomial-Time Hier-
archy. Theoretical Computer Science, 3(1).
Zhu, L.; and Givan, R. 2003. Landmark Extraction via Planning
Graph Propagation. In ICAPS 2003 Doctoral Consortium.

