When Perfect is not Good Enough: On the Search Behaviour of Symbolic Heuristic Search David Speck¹, Florian Geißer² and Robert Mattmüller¹ speckd@informatik.uni-freiburg.de, florian.geisser@anu.edu.au, mattmuel@informatik.uni-freiburg.de

¹University of Freiburg, ²The Australian National University

Motivation

Symbolic search and heuristic search are two successful approaches to optimal planning.

Symbolic Planner

- Symbolic state representation
- Blind search

Heuristic Planner

↓SymbolicHeuristicPlanner?

Symbolic Heuristic Search – Performance

- ▶ Oberservation: A BDD $B_{S'}$ can be larger than BDD B_S although the set of states S' is a strict subset of S, i.e. $S' \subsetneq S$.
- In symbolic search, the search performance is not directly related to the number of explicit states that have to be expanded.

- Explicit state representation
- Informed search
 - Symbolic heuristics

Symbolic Search for Optimal Planning

- Operations on sets of states
- ► $S \subseteq S$ represented by characteristic function χ_S
- ► Manipulating $S \cong$ Transforming χ_S
 - ► E.g. $S \cap S' \triangleq \chi_S \land \chi_{S'}$
- Binary Decision Diagrams (BDDs)
- Search performance depends on the size of BDDs

Symbolic Heuristic Search – BDDA*

Theoretical Results

Splitting BDDs according to heuristic values can increase or decrease the sizes of the resulting BDDs.

- ► In the worst case exponentially
- Even with the perfect heuristic h^{\star}

→ Exponential increase or decrease in search performance!

Empirical Results

- ► BDDA^{*} with fraction perfect heuristics $\rightsquigarrow c \cdot h^*$
- BDD sizes can increase or decrease
- Successor computation can take longer
- Given a set of states S, split it according to their h-value $S'_i = S \wedge H_i$.

- Consistent heuristics reduce the number of necessary state expansions
- Heuristic computation and state evaluation are expensive.

- Although fewer states are expanded
- ► ~→ Larger BDDs
- Similar results for uni- and bidrectional search

Conclusion

- Heuristic computation and state evaluation are expensive.
- Overall target: small BDDs
- Fewer States \implies smaller BDDs

BDDs can become exp. larger by using heuristics.