Learning Heuristic Selection with Dynamic Algorithm Configuration

David Speck¹, André Biedenkapp¹, Frank Hutter^{1,2}, Robert Mattmüller¹ and Marius Lindauer³ (speckd, biedenka, fh, mattmuel)@informatik.uni-freiburg.de, lindauer@tnt.uni-hannover.de ¹University of Freiburg, ²Bosch Center for Artificial Intelligence, ³Leibniz University Hannover

Satisficing Planning

- Search for a good plan
- ► **Inadmissible heuristics** are difficult to combine
- Greedy search with multiple heuristics
 - States evaluated with each heuristic
 - One separate open list for each heuristic

Automated Algorithm Configuration

- ► Algorithm Selection (AS) $\tilde{\pi} : \mathcal{I} \to H$
 - Considers instance (e.g. portfolio planner)
- \blacktriangleright Adaptive Algorithm Configuration (AAC) $\tilde{\pi} : \mathbb{N}_0 \to H$
 - Considers time step (e.g. alternation of heuristics)
- ▶ Dyn. Algorithm Configuration $\tilde{\pi} : \mathcal{I} \times \mathbb{N}_0 \times \mathcal{S} \to H$
 - Considers instance, time step and planner state
 - Problem can be considered as MDP
 - Our approach based on Reinforcement Learning

Dynamic Algorithm Configuration (DAC) – Theoretical Results

Features and Rewards

Features for each heuristic $h \in H$ (open list) \blacktriangleright max_h, min_h, μ_h , σ_h^2 , $\#_h$ and $t \in \mathbb{N}_0$

 \blacktriangleright Difference of each feature between t - 1 and t

Each expansion step until solution is found: -1

Experimental Results

Unseen Test Set

Algorithm	CONTROL POLICY			SINGLE HEURISTIC				BEST AS
Domain (#Inst.)	DAC	RND	ALT	h_{ff}	h_{cg}	h_{cea}	h_{add}	SGL. h
barman (100)	84.4	83.8	83.3	66.0	17.0	18.0	18.0	67.0
BLOCKS (100)	92.9	83.6	83.7	75.0	60.0	92.0	92.0	93.0
CHILDS (100)	88.0	86.2	86.7	75.0	86.0	86.0	86.0	86.0
ROVERS (100)	95.2	96.0	96.0	84.0	72.0	68.0	68.0	91.0
SOKOBAN (100)	87.7	87.1	87.0	88.0	90.0	60.0	89.0	92.0
visitall (100)	56.9	51.0	51.5	37.0	60.0	60.0	60.0	60.0
SUM (600)	505.1	487.7	488.2	425.0	385.0	384.0	413.0	489.0

- $\blacktriangleright H = \{h_{\rm ff}, h_{\rm cg}, h_{\rm cea}, h_{\rm add}\}$
- ► 6 domains with 100 instances
 - Per train and test set
- ε-greedy deep Q-learning
 - 2-layer network with 75 hidden units
 - ► 5 different DAC polices per domain
- DAC performs overall best
- Best AS is worse than DAC policies

DAC can improve heuristic selection by condering instance, time step and planner state.

Z N N N

An optimal DAC policy is at least as good as an optimal AS policy and an optimal AAC policy.

► There is a **family of planning tasks** so that a **DAC policy** expands exponentially fewer states

Reward in Training