Symbolic Planning with Edge-Valued Multi-Valued Decision Diagrams - Detailed Proofs

David Speck and Florian Geißer and Robert Mattmüller

University of Freiburg, Germany

{speckd, geisserf, mattmuel}@informatik.uni-freiburg.de

Abstract

This report contains the proof of correctness, soundness and optimality for EVMDD-A^{*} presented in the paper *Symbolic Planning with Edge-Valued Multi-Valued Decision Diagrams* (Speck, Geißer, and Mattmüller 2018).

1 Transition Relation

Lemma 1. Let (s, t') be an arbitrary state over $\mathcal{V} \cup \mathcal{V}'$. For any action a it holds that $(s, t') \in T_a$ iff a is applicable in s and t = s[a].

Proof. Let T'_a be the intermediate EVMDD of Terms (3) to (5). By construction of T'_a : a state $(s, t') \in T'_a$ iff a is applicable in s and t = s[a]. Furthermore, it holds that $(s, t') \in \mathcal{E}_{c_a}$ for all $(s, t') \in \mathcal{V} \cup \mathcal{V}'$ (Def. 1). Thus, $(s, t') \in T_a$ iff $(s, t') \in (T'_a \stackrel{\text{max}}{\wedge} \mathcal{E}_{c_a})$ iff $(s, t') \in T'_a$ iff a is applicable in s and t = s[a]. \Box

Lemma 2. Let $(s,t') \in T_a$. Then $T_a(s,t') = c_a(s)$.

Proof. The intermediate EVMDD T'_a of Terms (3) to (5) contains only states with 0 or infinite cost (Def. 4 & Def. 5). Since $(s,t') \in T_a$, it holds that $T'_a(s,t') = 0$. Then, $T_a(s,t') = (T'_a \wedge \mathcal{E}_{c_a})(s,t') = \max(T'_a(s,t'), c_a(s,t')) = \max(0, c_a(s,t')) = c_a(s,t') = c_a(s).$

2 Image

Note that we sometimes use "min" instead of $\stackrel{\min}{\vee}$. This simplifies the notations. If "min" is used for partial functions, we mean $\stackrel{\min}{\vee}$.

Theorem 1. Let t be an arbitrary state over \mathcal{V} . Then $t \in \text{image}(\mathcal{E}, T_a)$ iff there exists a state $s \in \mathcal{E}$ such that a is applicable in s and t = s[a].

Proof.

 $t \in \operatorname{image}(\mathcal{E}, T_a)$ $\Leftrightarrow t \in (\exists_{\mathcal{V}}^{\mathrm{LC}}(\mathcal{E} + T_a))[\mathcal{V}' \leftrightarrow \mathcal{V}]$ (Definition 7) $\Leftrightarrow t' \in \exists_{\mathcal{V}}^{\mathrm{LC}}(\mathcal{E} + T_a)$ (Substitution Lemma) $\Leftrightarrow t' \in \exists_{v_1, \dots, v_n}^{\mathrm{LC}} (\mathcal{E} + T_a)$ (Definition \exists^{LC}) $\Leftrightarrow \exists s : (s, t') \in (\mathcal{E} + T_a)$ (Transformation) $\Leftrightarrow \exists s : (s, t') \in \mathcal{E} \text{ and } (s, t') \in T_a$ (Definition 4) $\Leftrightarrow \exists s : s \in \mathcal{E} \text{ and } (s, t') \in T_a$ (Transformation) $\Leftrightarrow \exists s : s \in \mathcal{E} \text{ and } a \text{ is applicable in } s \text{ and } t = s[a]$ (Lemma 1) \Leftrightarrow there exists a state $s \in \mathcal{E}$ s.t. *a* is applicable in *s* (Transformation) and t = s[a]

From Theorem 1, Lemma 1 and Lemma 2 follows Corollary 1 which will be used to prove Theorem 2.

Corollary 1. Let t be an arbitrary state over \mathcal{V} with $t \in \text{image}(\mathcal{E}, T_a)$. Then there exists a state $s \in \mathcal{E}$ such that $(s, t') \in T_a$.

Proof. By definition $t \in \text{image}(\mathcal{E}, T_a)$. Thus, by Theorem 1 there is a state $s \in \mathcal{E}$ such that a is applicable in s and t = s[a]. It follows that there exists a state $s \in \mathcal{E}$ such that $(s, t') \in T_a$ (Lemma 1).

Theorem 2. Let $\hat{\mathcal{E}} = \text{image}(\mathcal{E}, T_a)$. Then $\hat{\mathcal{E}}(t) = \min_s(\mathcal{E}(s) + c_a(s))$ for all states $t \in \hat{\mathcal{E}}$.

Proof.

$$\begin{split} \hat{\mathcal{E}}(t) &= (\operatorname{image}(\mathcal{E}, T_a))(t) \\ &= ((\exists_{\mathcal{V}}^{\mathrm{LC}}(\mathcal{E} + T_a))[\mathcal{V}' \leftrightarrow \mathcal{V}])(t) & (\text{Definition 7}) \\ &= (\exists_{\mathcal{V}}^{\mathrm{LC}}(\mathcal{E} + T_a))(t') & (\text{Substitution Lemma}) \\ &= (\exists_{v_1, \dots, v_n}^{\mathrm{LC}}(\mathcal{E} + T_a))(t') & (\text{Definition } \exists^{\mathrm{LC}}) \\ &= (\min_{v_1, \dots, v_n}(\mathcal{E} + T_a))(t') & (\text{Definition } \exists^{\mathrm{LC}}) \\ &= (\min_{s}(\mathcal{E} + T_a))(t') & (\text{Transformation}) \\ &= (\min_{s}(\mathcal{E}(s, *) + T_a(s, *)))(t') & (\text{Transformation}) \\ &= \min_{s}(\mathcal{E}(s, t') + T_a(s, t')) & (\text{Transformation}) \\ &= \min_{s}(\mathcal{E}(s) + T_a(s, t')) & (\text{Transformation}) \\ &= \min_{s}(\mathcal{E}(s) + c_a(s)) & (\text{Corollary 1 + Lemma 2}) \end{split}$$

3 Preimage

Theorem 3. Let s be an arbitrary state over \mathcal{V} . Then $s \in \text{preimage}(\hat{\mathcal{E}}, T_a)$ iff there exists a state $t \in \hat{\mathcal{E}}$ such that a is applicable in s and t = s[a].

Proof.

$s \in \operatorname{preimage}(\hat{\mathcal{E}}, T_a)$	
$\Leftrightarrow s \in \exists_{\mathcal{V}'}^{\mathrm{LC}}(\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'] + T_a)$	(Definition 7)
$\Leftrightarrow s \in \exists^{\mathrm{LC}}_{v'_1, \dots, v'_n}(\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'] + T_a)$	(Definition \exists^{LC})
$\Leftrightarrow \exists t: (s,t') \in (\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'] + T_a)$	(Transformation)
$\Leftrightarrow \exists t: (s,t') \in \hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'] \text{ and } (s,t') \in T_a$	(Transformation)
$\Leftrightarrow \exists t: (t,s') \in \hat{\mathcal{E}} \text{ and } (s,t') \in T_a$	(Substitution Lemma)
$\Leftrightarrow \exists t: t \in \hat{\mathcal{E}} \text{ and } (s,t') \in T_a$	(Transformation)
$\Leftrightarrow \exists t: t \in \hat{\mathcal{E}} \text{ and } a \text{ is applicable in } s \text{ and } t = s[a]$	(Lemma 1)
\Leftrightarrow there exists a state $t\in \hat{\mathcal{E}}$ s.t. a is applicable in s	(Transformation)
and $t = s[a]$	

From Theorem 3, Lemma 1 and Lemma 2 follows Corollary 2 which will be used to prove Theorem 4.

Corollary 2. Let s be an arbitrary state over \mathcal{V} with $s \in \text{preimage}(\hat{\mathcal{E}}, T_a)$. Then there exists a state $t \in \hat{\mathcal{E}}$ such that $(s, t') \in T_a$.

Proof. By definition $s \in \text{preimage}(\hat{\mathcal{E}}, T_a)$. Thus, by Theorem 3 there is a state $t \in \hat{\mathcal{E}}$ such that a is applicable in s and t = s[a]. It follows that there exists a state $t \in \hat{\mathcal{E}}$ such that $(s, t') \in T_a$ (Lemma 1).

Theorem 4. Let $\mathcal{E} = \text{preimage}(\hat{\mathcal{E}}, T_a)$. For any state $s \in \mathcal{E}$ it holds that $\mathcal{E}(s) = \hat{\mathcal{E}}(s[a]) + c_a(s)$.

Proof.

$$\begin{split} \mathcal{E}(s) &= (\operatorname{preimage}(\hat{\mathcal{E}}, T_a))(s) \\ &= (\exists_{\mathcal{V}'}^{\mathrm{LC}}(\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'] + T_a))(s) & (\text{Definition 7}) \\ &= (\exists_{v_1, \dots, v_n'}^{\mathrm{LC}}(\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'] + T_a))(s) & (\text{Definition } \exists^{\mathrm{LC}}) \\ &= (\min_{v_1, \dots, v_n'}(\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'] + T_a))(s) & (\text{Definition } \exists^{\mathrm{LC}}) \\ &= (\min_{t'}(\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'] + T_a))(s) & (\text{Transformation}) \\ &= (\min_{t}(\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'](s, t') + T_a(s, t')))(s) & (\text{Transformation}) \\ &= \min_{t}(\hat{\mathcal{E}}[\mathcal{V} \leftrightarrow \mathcal{V}'](s, t') + T_a(s, t')) & (\text{Transformation}) \\ &= \min_{t}(\hat{\mathcal{E}}(t, s') + T_a(s, t')) & (\text{Substitution Lemma}) \\ &= \min_{t}(\hat{\mathcal{E}}(t) + T_a(s, t')) & (\text{Transformation}) \\ &= \min_{t}(\hat{\mathcal{E}}(s[a]) + c_a(s)) & (\text{Cor. } 2 + \text{Lem. } 2 + \text{Thm. } 3) \\ &= \hat{\mathcal{E}}(s[a]) + c_a(s) & (\text{Definition 1}) \end{split}$$

4 EVMDD- A^*

Lemma 3. Let Π be a planning task and h be a consistent heuristic. EVMDD- A^* expands states in the same order and with the same g-values as A^* with FIFO tie-breaking rule.

Proof. Let S_f be all states with minimum f-value of an open list *Open*. Recall that in A^* the tie-breaking between different states with minimum f-value in *Open* can be arbitrary. Let's assume the tie-breaking rule is "first in first out (FIFO)". The difference between EVMDD-A^{*} and A^{*} is that EVMDD-A^{*} expands all states of S_f at once while A^{*} iteratively ($|S_f|$ iterations) extracts these states. It is not possible that any other state is expanded before the $|S_f|$ iterations are finished, because h is consistent and therefore all newly generated successors have at least the f-value of all states in S_f .

- Goal check. Any ordering of expanding states in S_f is possible in A^* . Thus, it is equivalent to first check if any state in S_f is a goal state.
- Closed list. Any ordering of expanding states in S_f is possible in A^* . Thus, it is equivalent to first add all states S_f to the closed list and then expand all states S_f .
- Open list. By Theorem 1, in EVMDD-A^{*}, all successors of S_f are generated and added to the open list if they are not contained in the closed list.

This is equivalent to adding them iteratively to *Open*. By Theorem 2 the cost of a successor \hat{s} is the minimum cost with which \hat{s} is reachable from any state in S_f applying action a. In line 9 (Algorithm 1), the minimum cost is taken from the current cost of \hat{s} in *Open* or the minimum cost with which \hat{s} is reachable from S_f applying any actions $a \in A$. Thus, the cost of a state \hat{s} in *Open* is only updated iff it is reachable with lower cost from any expanded state in S_f . Again, this is equivalent to A^* after $|S_f|$ iterations.

Therefore, EVMDD-A^{*} and A^{*} expand nodes in the same order and with the same g-values. $\hfill \Box$

Lemma 4. Let Π be a planning task and h be a consistent heuristic. EVMDD- A^* returns "no plan" iff A^* returns "no plan".

Proof. In EVMDD-A^{*}, "no plan" is returned iff the open list is empty. By Lemma 3, the open list in EVMDD-A^{*} is found empty iff the open list in A^{*} is found empty. \Box

Lemma 5. Let Π be a planning task and h be a consistent heuristic. If a plan exists for Π , EVMDD-A^{*} returns the same plan as A^{*} with FIFO tie-breaking rule.

Proof. EVMDD-A^{*} expands states in the same order and with the same g-values as A^{*} (Lemma 3). Heuristic h is consistent, therefore all states in the closed list have minimum g-values g^* , i.e. the minimum cost with which they can be reached from s_0 . ConstPlan is a version of backward greedy search with perfect heuristic $h^* = g^*$ where the g^* -values are stored in the closed list. Thus, ConstPlan and therefore EVMDD-A^{*} returns an optimal plan from s_0 to any goal state expanded in EVMDD-A^{*}. EVMDD-A^{*} expands the same goal state as A^{*} (Lemma 3). Thus, EVMDD-A^{*} returns a plan iff A^{*} returns a plan and EVMDD-A^{*} returns the same plan as A^{*} (if a plan exists). □

Theorem 5 & 6. $EVMDD-A^*$ is complete, sound and optimal for consistent heuristics.

Proof. Let Π be a planning task and h be a consistent heuristic. EVMDD-A^{*} returns "no plan" iff A^{*} returns "no plan" (Lemma 4). If a plan exists for Π , EVMDD-A^{*} returns the same plan as A^{*} (Lemma 5). EVMDD-A^{*} is complete, sound and optimal for consistent heuristics because A^{*} is it too.

References

Speck, D.; Geißer, F.; and Mattmüller, R. 2018. Symbolic Planning with Edge-Valued Multi-Valued Decision Diagrams. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS). Accepted.