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Abstract
Classical planning provides a framework for solv-
ing sequential decision-making problems, i. e.,
finding a sequence of actions that transforms the
current state of the world into a state that satis-
fies a desired goal condition. Planning tasks are
modeled in a logic that describes the environment
and its dynamics. It is well known that the spe-
cific problem formulation can significantly affect
the performance of planning systems solving prob-
lems like the Rubik’s Cube or finding algorithms
for matrix multiplication. In this work, we propose
a domain-general problem reformulation that em-
bodies decoupled search, a search-reduction tech-
nique from classical planning and model checking.
Decoupled search decomposes a given problem to
exploit its structure, achieving exponential reduc-
tions over other search techniques. We show that
decoupled search can be captured exactly as a task
reformulation and that, on many benchmark do-
mains, it performs as good and sometimes even bet-
ter than a native decoupled-search implementation.

1 Introduction
Classical planning is concerned with finding a sequence of
operators (sometimes called actions) that transforms the ini-
tial state of a problem into a desired goal state. To solve plan-
ning tasks, a representation is required that allows to search
for a solution within the induced state space. Both theory and
practice show that the way planning problems are represented
has a significant impact on the performance and success rate
of many planning techniques.

In domain-specific settings, problem reformulations can be
approached in a very targeted way. Common examples in-
clude solving puzzles such as the Rubik’s Cube, where the
search is not over atomic operators but over macro operators
[Korf, 1997]. Similarly, in the design of algorithms for matrix
multiplication, the search is often not in the space of arith-
metic instructions, but encapsulated as a tensor decomposi-

*This is an abridged version of a paper that won the Best Paper
Award at the International Conference on Automated Planning and
Scheduling (ICAPS) 2024 [Speck and Gnad, 2024b].
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Figure 1: Overview of our approach, which embodies decoupled
search, a decomposition technique for planning problems, through
a task transformation. This eliminates the need for specialized al-
gorithms and allows the full toolbox of planning techniques to be
combined with decoupled search.

tion [Fawzi et al., 2022; Speck et al., 2023]. In general, re-
formulating a problem can yield an alternative state space that
may differ significantly in size and structure from the origi-
nal one, while at the same time facilitating the search. Thus,
problem reformulation is highly relevant in both domain-
specific and domain-independent planning.

In this work, we study decoupled state-space search, which
is based on a compact state representation, similar to sym-
bolic search [McMillan, 1993] with binary decision diagrams
[Bryant, 1986]. Decoupled search automatically decomposes
a planning problem into conditionally independent leaf com-
ponents with a synchronizing center factor that interacts with
the leaves [Gnad and Hoffmann, 2018]. It can achieve an ex-
ponential reduction in search effort, which empirically leads
to significant speed-ups and memory reductions when solving
many planning problems.

The key contribution of our work is to show that it is pos-
sible to simulate decoupled search for non-optimal planning
via a task transformation within the widely supported finite-
domain representation formalism (FDR) [Helmert, 2009].
More precisely, we demonstrate that given a SAS+ planning
task (a subset of FDR) [Bäckström and Nebel, 1995], we can
decompose the task as usual for decoupled search and create
a FDR planning task for which the induced state space is iso-
morphic to that of decoupled search on the original task (Fig-
ure 1). Thus, a search algorithm on the transformed planning



task behaves in the same way as its native decoupled-search
counterpart. This alleviates a major drawback of decoupled
search — the need for specialized algorithms — and enables
the full toolbox of past and future planning technology within
the decoupled-search framework.

2 Background
We provide a brief background on classical planning and de-
coupled search to motivate and contextualize our approach
of realizing decoupled search as a task reformulation. For a
comprehensive formal introduction we refer to the full paper
[Speck and Gnad, 2024b].

2.1 Classical Planning
Classical planning provides a declarative framework for se-
quential decision-making in complex environments. It deals
with the problem of finding a sequence of operators that, start-
ing from the current state of the world, leads to a state that
satisfies the desired goal properties. Classical planning tasks
are typically modeled in the SAS+ formalism [Bäckström
and Nebel, 1995], which uses propositional logic over a set
of finite-domain variables V to describe the environment.
Changes in the environment are described by deterministic
operators O, which are pairs of precondition, i. e., a set of
variable assignments that have to be satisfied for the operator
to be applicable, and effect, a set of assignments that is true
after the operator is applied. A state is a full variable assign-
ment. The solution of a planning task, a plan, is a sequence
of operators that is applicable in the initial state I and ends
in a state that satisfies the goal condition G.

A planning task induces a transition system with states de-
fined as complete variable assignments to V and transitions
induced by the operators. Solving the task corresponds to
finding a path from the initial state to a goal state.

The following example illustrates a simple logistics prob-
lem modeled as a SAS+ planning task.

Example 1 (Running Example). Let us consider a simple
logistics scenario with two connected locations, l1 and l2,
along with two packages, p1 and p2, and one truck t. These
are represented by the variables V = {t, p1, p2}, with do-
mains: Dt = {l1, l2} and Dp1 = Dp2 = {l1, l2, t}.

Initially, both the packages and the truck are at position l1,
modeled as I(v) = l1 for all v ∈ V . The goal is to transport
both packages to l2, given as G = {p1 = l2, p2 = l2}. Both
the initial and goal states are illustrated in Figure 2.

There are three types of operators in this example: drive
operators that drive the truck between locations, load oper-
ators responsible for loading a package onto the truck, and
unload operators for unloading a package from the truck.
Formally, we have for any i, j ∈ {1, 2}:

• drive(li, lj) = ⟨{t = li}, {t = lj}⟩ with i ̸= j

• load(pi, lj) = ⟨{t = lj , pi = lj}, {pi = t}⟩
• unload(pi, lj) = ⟨{t = lj , pi = t}, {pi = lj}⟩
A possible plan is to first load the two packages into the

truck, then drive the truck to l2, and unload both packages.

l1 l24t p1 p2 p1 p2

Figure 2: Illustration of the initial state (solid packages) and goal
(dashed packages) of the running example.

The number of states in the example task grows exponen-
tial with the number of packages. This can pose a significant
challenge to modern search algorithms.

2.2 Decoupled Search
Decoupled search is a search reduction technique that refor-
mulates the state space of SAS+ planning tasks and employs
this alternative representation to find a plan [Gnad and Hoff-
mann, 2018]. It can efficiently solve problems like Example 1
by identifying and exploiting the causal structure of the task,
i.e., the variable dependencies, via problem decomposition.

As a first step, decoupled search partitions the variables V
of a planning task Π into a tuple F = ⟨C,L⟩ with C ⊆ V and
L ⊆ 2V . F is a factoring for a task Π if either {C} ∪ L or L
forms a partition of the set of variables V . Then C represents
the (possibly empty) center of F , while L denotes its leaves.
A complete assignment to the center C or to a leaf L ∈ L is
called a center state or leaf state, respectively.

A factoring induces a separation of the set of operators O
into global operators OG, which affect a center variable or
touch multiple leaves, and the leaf operators OL.1 Important
are the leaf-only operators for a leaf L, which have effects
only on variables in L and preconditions on C ∪ L.

Example 2. A natural factoring Ft for the planning task
outlined in Example 1 is Ft = ⟨{t}, {{p1}, {p2}}⟩. Here,
the truck forms the center C = {t}, while each package pi
forms a leaf Li = {pi}. The operators load and unload are
leaf-only operators, with preconditions concerning the truck
(center) and the respective package (leaf), and effects con-
cerning the package (leaf) only. Conversely, the truck drive
operators represent global operators, with preconditions and
effects that only affect the truck (center).

An alternative factoring, Fp = ⟨{p1, p2}, {{t}}⟩, puts the
package variables into the center, while assigning the truck
to a leaf. Thus, in Fp, the roles of the operators are swapped,
i.e., the drive operators become leaf-only operators, while
the load and unload operators act as global operators.

The search is then done over so-called decoupled states sD,
which are pairs ⟨center(sD), leaves(sD)⟩, where center(sD)
is a center state and leaves(sD) is a set of leaf states for each
leaf factor L ∈ L. In essence, a decoupled state sD repre-
sents a set of explicit states from the original planning task
Π, all sharing the same center state center(sD), and where
the leaf variables can take values from the cross-product of
the leaf states leaves(sD) across the leaves L. Transitions be-
tween decoupled states are induced only by global operators,
while the leaf-only operators serve to saturate the set of leaf
states in a decoupled state. In particular, after the application
of a global operator, the saturation computes the set of all leaf
states that can be reached via leaf-only operators. The set of

1An operator can be both a global and a leaf operator.



IF : t = l1
l1 l2 t

p1 1 0 0
p2 1 0 0

IF∗ : t = l1

l1 l2 t

p1 1 0 1
p2 1 0 1

saturate

sD: t = l2
l1 l2 t

p1 1 0 1
p2 1 0 1

sD∗ : t = l2

l1 l2 t

p1 1 1 1
p2 1 1 1

saturate

drive(l1, l2)

Figure 3: Illustration of the decoupled state space needed to deter-
mine a decoupled plan for the running example.

saturated leaf states is denoted by leaves∗(sD). In the initial
decoupled state IF , only the leaf state resulting from the pro-
jection of the initial state I onto each leaf L ∈ L is reached,
which is then saturated (denoted by IF∗ ). After every appli-
cation of a global operator, the set of reached leaf states is
updated and saturated.

This decoupled state representation enables a compact de-
scription of a possibly large set of states, potentially leading
to an exponential reduction in search effort compared to ex-
plicit state-space search in the regular state space.

Example 3. Consider our running example with the factor-
ingF = Ft. Part of the decoupled state space is illustrated in
Figure 3. In the unsaturated initial state IF and its saturated
counterpart IF∗ , the single center variable t has the value
l1. In IF , each leaf has a single leaf state, {p1 = l1} and
{p2 = l1}, indicating the initial location l1 of both packages.
In the saturated initial state IF∗ , we have a total of four leaf
states, namely leaves∗(IF ) = {{p1 = l1}, {p1 = t}, {p2 =
l1}, {p2 = t}}. This is due to the applicability of leaf-only
operators load(l1, pi) for both packages.

Since IF∗ does not contain a goal state, we proceed by ap-
plying the only applicable global operator, drive(l1, l2), re-
sulting in the unsaturated decoupled state sD. Here, the cen-
ter variable is updated, while the reached leaf states remain
unchanged, since they satisfy the preconditions of the opera-
tor and are not affected by it. The saturated decoupled state
sD∗ matches the goal condition due to the unload leaf-only
operators, giving us a decoupled plan: ⟨drive(l1, l2)⟩.

We remark that a decoupled plan – a sequence of labels
representing a path from an initial state to a goal state in the
decoupled state-space – is not a plan in the original task be-
cause it considers only global operators and ignores the leaf-
only operators. However, it is efficiently possible to con-
struct a plan for the original task from the decoupled plan by
scheduling leaf-only operators along the global ones [Gnad
and Hoffmann, 2018].

3 Decoupled Search as a Task Transformation
Our task transformation approach is based on the FDR plan-
ning formalism [Helmert, 2009], which, in simple terms, ex-
tends the previously introduced SAS+ formalism by a back-
ground theory in the form of a stratified logic program. Con-
cretely, the FDR formalism has two sets of variables, the pri-
mary variables V as in SAS+ and a set of secondary (or de-
rived) variables D. The secondary variables are binary, with

A(Idec):
Idec : t = l1
v{∗} Val

p1=l1 1
p1=l2 0
p1=t 0
p2=l1 1
p2=l2 0
p2=t 0

d{∗} Val

p1=l1 1
p1=l2 0
p1=t 1
p2=l1 1
p2=l2 0
p2=t 1

extend

A(s):
s: t = l2
v{∗} Val

p1=l1 1
p1=l2 0
p1=t 1
p2=l1 1
p2=l2 0
p2=t 1

d{∗} Val

p1=l1 1
p1=l2 1
p1=t 1
p2=l1 1
p2=l2 1
p2=t 1

extend
drive(l1, l2)

Figure 4: Illustration of the state space of the transformed task Πdec
F

(embodying decoupled search) needed to determine a decoupled
plan for the running example.

a default value of 0, and in every state their value is exactly
determined by the values of the primary variables. The values
are obtained by performing a fixed-point computation over a
set of axiom rules that derive whether a secondary variable be-
comes true (represented by the value 1). This computation is
also called extension of the state. The conditions for applying
an axiom can be over both primary and secondary variables,
hence the axioms must be non-conflicting, or stratifiable [Apt
et al., 1988; Thiébaux et al., 2005]. The FDR formalism is
strictly more expressive than SAS+ because it allows to rep-
resent planning problems and their solutions more compactly.

For our task transformation, we take an input SAS+ task
Π, compute a factoring F = ⟨C,L⟩, and transform it into a
decoupled FDR task Πdec

F in which the secondary variables
and axioms encode the leaf semantics of decoupled search.
An overview of the entire task transformation is shown in
Figure 1. At a high level, this transformation ensures that
each state in the transformed task corresponds exactly to a
decoupled state in the original task, consisting of a single
center state and a set of reached leaf states. Transitions be-
tween states are encoded by keeping and modifying the orig-
inal global operators to maintain the decoupled state repre-
sentation. Finally, the axioms describe a background theory
accurately modeling the saturation of decoupled states after
applying a global operator.

More concretely, we keep only the center variables C in V
and add a new binary variable vsL for every leaf state sL to
indicate if that leaf state is reached. Similarly, there is a sec-
ondary variable dsL ∈ D for each leaf state, which is derived
from the corresponding primary variable vsL or from an ax-
iom that models a leaf-state transition. These axioms encode
the leaf state spaces via the leaf-only operators, i. e., if a leaf
state tL can be reached from a leaf state sL with a leaf-only
operator oL, then there exists an axiom for oL that mimics
this. The saturation of decoupled states is then achieved by
the fixed-point computation over the axioms. The following
example showcases the transformation on our example.2

Example 4. Consider the running example with factoring
2We omit some details of the exact modeling and refer to the full

paper for more information.



F = Ft. Figure 4 illustrates parts of the state space of
Πdec

F . The primary variables include the center variable t
and a variable vsL for each leaf state sL. The secondary
variables include a variable dsL for each leaf state. There are
two global drive operators that move the truck between loca-
tions and also “copy” values from the secondary variables
dsL to the primary variables vsL , preserving the reached leaf
states. The transformed task further contains axioms which
copy values from vsL to dsL variables, and the leaf-only op-
erator axioms, representing load (dpi=t ← pi = lj ∧ t = lj)
and unload operators (dpi=lj ← pi = t ∧ t = lj).

Figure 4 shows the initial state Idec and its extension,
A(Idec), where the truck and both packages are at l1. In
A(Idec), we can infer that the packages can be at l1 or in the
truck. After applying the only applicable operator, we find a
goal state s that yields the plan ⟨drive(l1, l2)⟩.

An important property of the transformation is that it ex-
actly captures the behavior of decoupled search, i. e., any
search algorithm X executed on the transformed task behaves
exactly as the decoupled variant of X on the original task.
Formally, the state space of the transformed task is isomor-
phic to the decoupled state space of the original task:

Theorem 1. Let Π = ⟨V, I,G,O⟩ be a SAS+ planning task
and F be a factoring for Π. Then the FDR state space of
Πdec

F and the decoupled state space of Π are isomorphic.

4 Experimental Evaluation
We implemented our decoupled task transformation in the
Fast Downward 23.06 framework (FD) [Helmert, 2006]. Our
experiments were conducted on all 2106 STRIPS instances
from the satisficing sequential tracks of the International
Planning Competitions 1998–2023. Our code and experimen-
tal data are available online [Speck and Gnad, 2024a].3

Setup. We evaluate our approach by performing search di-
rectly on the transformed task with two different configu-
rations: lazy greedy best-first search (GBFS) with the hFF

heuristic [Hoffmann and Nebel, 2001] and a dual-queue
open list with preferred operators (PO) [Richter and Helmert,
2009], and the first iteration of LAMA [Richter and West-
phal, 2010]. We compare our decoupled task representation
(dec) to the original SAS+ encoding of FD (sas) and to the
native decoupled-search implementation of Gnad and Hoff-
mann [2018] (gh). Furthermore, we include the Merge-And-
Shrink task reformulation method proposed by Torralba and
Sievers [2019] (ts), which to our knowledge is the only alter-
native technique that extensively restructures the state space.
As factoring strategy for our transformation and native decou-
pled search, we pick the best configuration reported by Gnad
et al. [2022] for satisficing planning.

Performance. Table 1 shows the total coverage results
(number of instances solved) for all instances across multi-
ple domains where the factoring process is successful. While
our transformation-based approach is overall behind the na-
tive implementation (gh), it clearly outperforms the original

3https://github.com/speckdavid/decoupling-transformer

GBFS(hFF, PO) LAMA
# sas gh ts dec sas dec

1059 912 980 915 944 942 962

Table 1: Coverage (number of solved instances) of GBFS with hFF

and preferred operators, respectively LAMA, projected on the set of
instances in which our factoring method is successful. Best coverage
is highlighted in bold face.

encoding (sas), even if that uses LAMA. However, our ap-
proach beats gh in four domains. Compared to the Merge-
And-Shrink reformulation (ts), either of the methods outper-
forms the other in some domains, but overall dec is ahead by
29 instances. We remark that both gh and ts would require a
specialized adaptation of the landmark heuristic in LAMA,
whereas our approach works out of the box. When using
LAMA, our approach beats the baseline with SAS+ encod-
ing by 20 instances overall.

5 Conclusion
We introduced a novel approach to performing a search re-
duction technique, in our case decoupled search, as a task
transformation. By reformulating the input task we can ex-
actly capture the behavior of decoupled search, which, like
a native implementation, can achieve exponential savings in
search effort. In practice, this dramatically simplifies the use
of decoupled search by eliminating the need for specialized
implementations. Instead, with our transformation, any plan-
ning technique can be used out-of-the-box in combination
with decoupled search. We have demonstrated this advantage
with the well-established LAMA planner, one of the most
powerful classical planning systems. As future work, we
plan to explore orthogonal planning techniques on our trans-
formed tasks, such as symbolic search using binary decision
diagrams, or planning as satisfiability, and want to investigate
if other reduction techniques, such as symmetry breaking, can
be implemented via task transformation.
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