Symbolic Search for Oversubscription Planning David Speck¹ and Michael Katz² – speckd@informatik.uni-freiburg.de, michael.katz1@ibm.com ¹University of Freiburg, ²IBM T.J. Watson Research Center

Motivation

Multiple Goals

Pictures by NASA/JPL/Cornell University

Achieve the highest utility respecting the limited resources.

~ Contribution: Application of symbolic search.

Oversubscription Planning (OSP)

- An OSP task is a 6-tuple $\Pi = \langle \mathcal{V}, s_0, \mathcal{O}, c, u, b \rangle$.
- \triangleright \mathcal{V} : set of finite-domain state variables
- \blacktriangleright s_0 : initial state over \mathcal{V}
- $\triangleright \mathcal{O}$: set of operators $o = \langle pre_o, eff_o \rangle \in \mathcal{O}$
- $\triangleright c: \mathcal{O} \mapsto \mathbb{N}_0$: operator cost
- $\blacktriangleright u: S \mapsto \mathbb{N}_0$: utility function defined for each possible state
 - \blacktriangleright \rightarrow e.g., multiple goals with different utilities
- ▶ $b \in \mathbb{N}_0$: cost bound for plans
 - ► ~→ limited resources
- operator cost and utility are not comparable

OSP Plan

- ▶ applicable sequence of operators $\pi = \langle o_0, \ldots, o_{n-1} \rangle$
- **plan cost** $c(\pi) \leq b$ (cumulative operator cost)
- ▶ plan utility $u(\pi) \triangleq$ utility of the end state $u(s_0[\pi])$
- optimality: highest utility among all plans

~			
Sumbol	oroh f	000100	
SVIIIDOI		assical	

- operations on sets of states
- \blacktriangleright *S* \subseteq *S* represented by characteristic function χ_S
 - ▶ e.g., $S \cap S' riangle \chi_S \wedge \chi_{S'}$
- Binary Decision Diagrams (BDDs)

SYM-OSP – Symbolic Search for OSP

perform forward symbolic blind search				
similar to symbolic search for classical planning				
evaluate utility values of states that are expanded				
u as ADD: multiplication + maximum				
u as BDDs: multiple intersections				
termination criteria				
state with highest possible utility is found				
all reachable states within b are expanded				
SYM-OSP IS Sound , complete and optimal .				
SYM-OSP finds cheapest utility-optimal plans.		► alte		

Experiments

Algorithm	SYM-OSP		$\mathbf{A}^{\star}_{uadd}$	A_{mc}^{\star}		BNB		
Benchmark Set (# Inst.)	UBDD	UADD	$\mathbf{h}_{\text{blind}}$	$\overline{h_{blind}}$	h_{\max}^{b}	$h^{\sf b}_{\sf m\&s}$	h_{blind}	$h_{ m Imcut}^{ m mc}$
25% BOUND (1667)	1271	1274	1165	1197	1190	1074	1183	1151
50% Bound (1667)	990	993	860	901	902	828	893	867
75% Bound (1667)	866	862	718	758	738	734	735	702
100% BOUND (1667)	802	793	629	668	655	676	643	618
Overall (6668)	3929	3922	3372	3524	3485	3312	3454	3338

anning

Utility Function as raic Decision Diagram (ADD)

(x,y) = 2x + xyernative: multiple BDDs

