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Abstract
The objective of optimal oversubscription planning is to find
a plan that yields an end state with a maximum utility while
keeping plan cost under a certain bound. In practice, the situa-
tion occurs whenever a large number of possible, often com-
peting goals of varying value exist, or the resources are not
sufficient to achieve all goals. In this paper, we investigate
the use of symbolic search for optimal oversubscription plan-
ning. Specifically, we show how to apply symbolic forward
search to oversubscription planning tasks and prove that our
approach is sound, complete and optimal. An empirical anal-
ysis shows that our symbolic approach favorably competes
with explicit state-space heuristic search, the current state of
the art for oversubscription planning.

Introduction
The objective of classical planning is to find a plan, i.e., a
sequence of actions with low cumulative cost that leads to
a goal state. Goal states are usually specified by a goal for-
mula, and most planning algorithms are designed to find a
plan that satisfies the entire formula. In practice, however,
there can be a large number of possible, often competing
goals of varying value, and a system (e.g. Mars rover) might
not be able to achieve all these goals with the available re-
sources (e.g. battery power). In such scenarios, it is natural
to consider a utility of a state instead and search for states
that maximize the overall utility value. If the action costs
and state utility values, i.e., solution cost and solution utility,
are comparable, the problem of finding a plan is called net-
benefit planning (van den Briel et al. 2004). If solution cost
and utility are not comparable, the problem is called over-
subscription planning (Smith 2004). In other words, over-
subscription planning defines a utility function that maps
states to the utility value associated with achieving these
states, and the objective is to find a plan whose cost does
not exceed a specified cost bound, while reaching a state
that achieves a high utility. Both net-benefit and oversub-
scription planning are also known under the common name
partial satisfaction planning.

Over the past decades, both classical and partial satis-
faction planning have seen a variety of competitive ap-
proaches, with the most successful being the explicit state-
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space heuristic search (Bonet and Geffner 1999) and the
symbolic search (Cimatti et al. 1997). For net-benefit in par-
ticular, symbolic branch-and-bound search was introduced
(Edelkamp and Kissmann 2009; Kissmann 2012), solving
a so-called planning with soft-goals problem. More pre-
cisely, instead of a general state utility function, a subset of
variables, so-called soft goals, is specified, each associated
with a certain utility value. An introduction of a compilation
of soft-goals into classical planning (Keyder and Geffner
2009), has allowed to apply classical planners to solving net-
benefit planning tasks. The underlying idea behind the com-
pilation is that each net-benefit planning task can be reduced
to finding a shortest path from a single source node to a sin-
gle goal node in a graph under a single objective function.

For oversubscription planning, however, unlike for net-
benefit planning, there is no simple reduction to classical
planning with a single objective function. In fact, the com-
plexity of several fragment of these two problems is differ-
ent (Katz and Mirkis 2016). The first practically efficient
approaches to optimally solving oversubscription planning
applied an explicit branch-and-bound search with heuris-
tics adapting the ideas of classical planning to oversubscrip-
tion planning (Mirkis and Domshlak 2013, 2014; Domsh-
lak and Mirkis 2015; Muller and Karpas 2018). Later, Katz
et al. (2019a) introduced reformulations of oversubscription
planning as classical planning with two cost functions, but
without an utility function. The reformulations allowed to
directly adapt classical planning heuristics to oversubscrip-
tion planning by simply ignoring the secondary cost func-
tion, improving the efficiency of branch-and-bound search.
Finally, Katz and Keyder (2019) show that these reformu-
lations are useful for search as well, allowing switching to
the more efficient A? search (Hart, Nilsson, and Raphael
1968), performed on the reformulated task. The search can
then use the aforementioned adapted heuristics from clas-
sical planning (Katz and Keyder 2019). However, if such
heuristics are used as-is, and not adapted to account for the
secondary cost function, their informativeness is not suffi-
cient to compensate for the time spent on the computation.
As a result, the informed search is often outperformed by a
simple blind search. If, however, the heuristics are adapted
to account for the secondary cost function, the performance
of the informed search improves significantly (Katz and
Keyder 2019). Despite these advances, an exhaustive unin-



formed branch-and-bound search remains somewhat com-
petitive (Katz et al. 2019a; Katz and Keyder 2019).

Another state space exploration technique that is es-
pecially well-suited for an exhaustive search is symbolic
search (McMillan 1993). In contrast to explicit search, in
which individual states are generated and expanded, sym-
bolic search operates on sets of states. It uses efficient
data structures, Binary Decision Diagrams (BDDs) (Bryant
1986) and Algebraic Decision Diagrams (ADDs) (Bahar
et al. 1997) to represent and manipulate these sets of states.
Recently, Eifler et al. (2020) applied symbolic search in the
context of plan explanation, where plan utility is defined not
in terms of states but as a set of plan properties, with the
aim of providing an analysis that identifies dependencies be-
tween these plan properties. Nonetheless, to the best of our
knowledge, symbolic search techniques have not yet been
applied to oversubscription planning.

In this paper, we investigate the use of symbolic search for
optimal oversubscription planning. In particular, we show
how to apply symbolic forward search to oversubscription
planning and introduce an algorithm that is sound, complete
and optimal. Finally, an empirical study on various planning
domains is conducted which shows that the presented algo-
rithm results in an optimal planner that exceeds the current
state of the art in terms of overall coverage.

Preliminaries
We consider oversubscription planning tasks (Smith 2004)
that are characterized by the SAS+ formalism (Bäckström
and Nebel 1995).

Definition 1 (OSP Task). An oversubscription planning
(OSP) task is a 6-tuple Π = 〈V,O, s0, c, u, b〉. V is a fi-
nite set of state variables, each associated with a finite do-
main Dv = {0, . . . , |Dv| − 1}. A fact is a pair (v, d), where
v ∈ V and d ∈ Dv . For binary variables we also write v for
(v, 1) and ¬v for (v, 0). A partial variable assignment s over
V is a consistent set of facts. If s assigns a value to each vari-
able v ∈ V , s is called a state. With S we refer to the set of
all possible states defined over V . O is a finite set of opera-
tors, where each operator is a pair o = 〈preo, eff o〉 of partial
variable assignments, called preconditions and effects. The
state s0 ∈ S is called the initial state. Each operator has non-
negative cost defined by the function c : O 7→ N0. Finally,
u : S 7→ N0 is an efficiently computable state utility function
and b ∈ N0 specifies a cost bound.

An operator o ∈ O is applicable in a state s iff preo is
satisfied in s, i.e., preo ⊆ s. Applying operator o to state s
yields the state s′ where s′(v) = eff o(v) for all variables
v ∈ V for which eff o is defined and s′(v) = s(v) otherwise.
A plan in oversubscription planning is defined as follows.

Definition 2 (Plan). A plan π = 〈o0, . . . , on−1〉 for an over-
subscription planning task Π is a sequence of operators ap-
plicable in s0 that yield the states s1, . . . , sn, such that the
cumulative operator cost c(π) =

∑n−1
i=0 c(oi) is smaller or

equal to the cost bound b, i.e., c(π) ≤ b. The utility u(π) of
plan π is defined by the utility of the end state sn induced
by π, i.e., u(π) = u(sn). Such a plan π is considered to

be utility-optimal or simply optimal if there is no other plan
π′ such that u(π′) > u(π). A plan π is cheapest utility-
optimal if it is cheapest among utility-optimal plans: there is
no utility-optimal plan π′ such that c(π′) < c(π).

Since the empty plan is already a valid plan for any OSP
task, the main objective of oversubscription planning is to
determine a plan with high utility. The search for an optimal
plan, i.e., a plan with the highest utility, is called optimal
oversubscription planning and is the main focus of this work.

Symbolic Search
Symbolic search is a technique for exploring state spaces
that uses efficient data structures to represent and manipu-
late sets of states (McMillan 1993). Symbolic search algo-
rithms resemble their explicit counterparts, but expand and
generate whole sets of states in contrast to individual states.
In symbolic planning, a set of states S ⊆ S is represented by
its characteristic function χS , which is a Boolean function
χS : S 7→ {0, 1}. States contained in S are mapped to 1
and all other to 0, i.e., χS(s) = 1 if s ∈ S and χS(s) = 0
otherwise. An operator o ∈ O can be represent as transition
relation (TR) that is defined over sets of state pairs, namely
predecessors and successors. A TR To representing an op-
erator o ∈ O is a function χT : S × S′ 7→ {0, 1} which
maps the pairs of states (s, s′) to 1 iff successor s′ is reach-
able from predecessor s by applying operator o ∈ O. Given
a set of states S and a TR To, the image(S, To) operation
computes all successors of S with respect to the operator o.
Note that a single TR can in general represent multiple op-
erators with the same cost (Torralba 2015). From now on,
if it is clear from the context, we sometimes simplify nota-
tion and use the same symbol S for a set of states S and the
corresponding characteristic function χS .

Symbolic representation of a planning task makes it pos-
sible to carry out symbolic forward search. The search starts
with the characteristic function of the initial state χ{s0} and
iteratively computes the successors until a function is found
which meets a certain stopping condition. In classical plan-
ning, e.g., the stopping condition is an non-empty intersec-
tion with the goal. Finally, a plan reconstruction (Torralba
2015) is performed to obtain the final plan. This is neces-
sary because, in contrast to explicit search, the predecessor
states of an expanded state are not directly known in sym-
bolic search. The plan is constructed by reconstructing the
path from the initial state to the end state using a closed list
which provides the perfect heuristic for all expanded states.

Symbolic Data Structures
In symbolic search, characteristic functions are usually rep-
resented by compact and efficient symbolic data structures
such as (reduced and ordered) Binary Decision Diagrams
(BDDs) (Bryant 1986).
Definition 3 (Binary Decision Diagram). A BDD is a di-
rected acyclic graph with a single root node and two termi-
nal nodes: the 0-sink and the 1-sink. Each inner node corre-
sponds to a binary1 variable v ∈ V and has two successors,

1Each finite-domain variable v ∈ V can be represented by
dlog2 |Dv|e binary variables.
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(b) An ADD representing
the numeric function u =
2x+ xy.

Figure 1: Visualization of different decision diagrams.

where the low edge represents that variable v is false, while
the high edge represents that variable v is true. By traversing
the BDD according to a given assignment, the represented
function can be evaluated.

Figure 1a visualizes the BDD which represents the char-
acteristic function χS = x ∧ ¬y, i.e., the set of states
S = {s ∈ S | s(x) = 1 ∧ s(y) = 0}.

Algebraic Decision Diagrams (ADDs) (Bahar et al.
1997) and Edge-Valued Multi-Valued Decision Diagrams
(EVMDDs) (Lai, Pedram, and Vrudhula 1996; Ciardo and
Siminiceanu 2002) have been successfully used to represent
numerical functions (Hansen, Zhou, and Feng 2002; Tor-
ralba, Linares López, and Borrajo 2013; Speck, Geißer, and
Mattmüller 2018a,b) in symbolic planning. In this work, we
focus on ADDs in addition to BDDs which makes it possible
to represent the utility function u as a decision diagram. The
definition of an ADD is similar to the definition of BDDs,
but using an arbitrary number of terminal nodes with differ-
ent discrete values including real numbers. Figure 1b visu-
alizes the ADD which represents the function u = 2x+ xy.
From now on we assume that numeric functions u are repre-
sented as ADD if not stated differently.

Operations. The max(u) operation determines the maxi-
mum value of a function u, i.e., max(u) = maxs∈S u(s).
Note that the terminal nodes of an ADD u describe all pos-
sible values that u can have. This makes it possible to effi-
ciently determine the maximum value of u once the ADD is
created. The function shown in Figure 1b has exactly three
different values, where 3 is the maximum value. In addi-
tion, an ADD can be disassembled into multiple BDDs, one
for each terminal node, in polynomial time and memory
with respect to the ADD size (number of nodes) by sub-
stituting terminal nodes (Torralba 2015). For example, the
ADD shown in Figure 1b can be disassembled into three
different BDDs, one for each terminal node. Figure 1a de-
picts the BDD representing all states for which the evalu-
ation of function u = 2x + xy is 2. The arg max(u) op-
eration takes advantage of this property and returns the set
of states with the maximum value of a function u as BDD,
i.e. arg max(u) = arg maxs∈S u(s). Finally, the intersec-
tion u ∧ S between an ADD u and BDD S results in a new

ADD uS , where uS(s) = u(s) if s ∈ S and uS(s) = −∞
otherwise. Intuitively, this operation preserves only the util-
ity values of states in S which makes it for example possible
to determine the maximum utility value of a given set of
states S by applying max(S ∧ u).

Symbolic Search for OSP
In this section, we describe and explain how symbolic for-
ward search can be applied to oversubscription planning and
prove that our presented algorithm SYM-OSP is sound, com-
plete and optimal. Finally, we discuss the possible applica-
tion of symbolic backward and bidirectional search to over-
subscription planning and the associated challenges and is-
sues. For simplicity, we define SYM-OSP only explicitly for
oversubscription planning tasks with unit costs, i.e., where
each operator has an application cost of 1. Symbolic uni-
form search, also known as Dijkstra’s algorithm (Dijkstra
1959) can be used for non-unit cost oversubscription plan-
ning tasks, which is possible by bucketing (disassembling)
transition relations, open lists and closed lists into subsets
with identical cost values represented as BDDs (Edelkamp
and Kissmann 2009; Torralba 2015). Note that the presented
algorithm and all presented concepts and theoretical results
generalize to oversubscription planning tasks with non-unit
operator cost.2

Algorithm SYM-OSP
The underlying idea of SYM-OSP (Algorithm 1) is to per-
form an exhaustive forward search and to explore all states
reachable until the cost bound is reached or a state with max-
imal utility is found. Once one of the termination criteria
is satisfied, the plan is reconstructed. Recall, that the plan
reconstruction is necessary because, in contrast to explicit
search, the predecessor states of an expanded state are not
directly known in the symbolic search. SYM-OSP is analo-
gous to symbolic forward search for classical planning, with
the difference that in classical planning we terminate as soon
as the open list is empty or a goal state is found.

Note that all sets of states are represented as BDDs and
all numeric functions as ADDs. In detail, SYM-OSP (Algo-
rithm 1) works as follows. First, the open list is initialized
as the singleton set only containing the initial state, and the
closed list is initialized as the empty set of states (line 1). The
BDD πS maintains the previously expanded states with the
highest utility value found and is thus also initialized as the
singleton set only containing the initial state (line 2). Sim-
ilarly, with πu we store the highest utility of all states that
have been expanded so far and with πg we store the cheap-
est cost with which a state with utility πu can be reached.
Recall that the empty plan is already a valid, but often not
optimal plan for each OSP task. The algorithm continues as
long as 1) the open list is not empty, 2) the cost bound has not
been exceeded, and 3) no state with the highest possible util-
ity has been found (line 4). In each iteration, the current set
of states open is expanded and the already expanded states
closed are removed from the resulting set of successors. In
line 7 the maximum utility value of all new states open is

2Our implementation supports operators with non-unit costs.



Algorithm 1: SYM-OSP for unit cost OSP tasks
Data: OSP Task Π = 〈V,O, s0,O 7→ 1, u, b〉
Result: Cheapest utility-optimal plan π

1 open, closed← {s0}, ∅
2 πS , πu, πg ← {s0}, u(s0), 0
3 g ← 1
4 while open 6= ∅ and g ≤ b and πu < max(u) do
5 closed← closed ∨ open
6 open← (

⋃
o∈O image(open, To)) ∧ ¬closed

7 if πu < max(open ∧ u) then
8 πS ← arg max(open ∧ u)
9 πu ← max(open ∧ u)

10 πg ← g

11 g ← g + 1

12 return ReconstPlan(Π, open, closed, πS , πu, πg)

computed and compared with the previously highest known
utility value πu. Lines 8 and 10 are reached when at least
one state with higher utility has been found. Especially in-
teresting is line 8, where the BDD πS is updated with all the
new states that yield the new and higher utility value πu. Fi-
nally, the plan reconstruction (Torralba 2015) is performed
to obtain and return the final plan (line 12).

Example 1. Consider a unit-cost oversubscription planning
task Π = 〈V,O, s0,O 7→ 1, u, b〉 with two binary variables
V = {x, y} where Dx = Dy = {0, 1}. Furthermore, Π
has the initial state s0(x) = s0(y) = 0, the utility function
u = 2x + xy and the cost bound b = 1. There exist three
operators O = {o1, o2, o3} where o1 = 〈¬x ∧ ¬y, y〉, o2 =
〈¬x ∧ ¬y, x〉 and o3 = 〈x ∧ ¬y, y〉. The induced transition
system of Π is depicted in Figure 2.

We apply SYM-OSP (Algorithm 1) to Π which starts with
the BDD open = {s0} = ¬x ∧ ¬y representing a single
state, namely the initial state (line 1). Note that Figure 1b
visualizes the utility function u as ADD with a maximum
utility of 3. The set of best states πS is initialized with the
initial state s0, which can be reached with cost πg = 0 and
has the utility value of u(s0) = 0 (line 2). The first expan-
sion (line 6) leads to two new states open = {s1, s2} =
(¬x∧y)∨ (x∧¬y), both of which can be reached with cost
g = 1. Since the intersection open∧umaps the utility values
of states s 6∈ open to −∞, the result of max(open ∧ u) is 2
(line 7 and 8). The operation arg max(open∧ u) returns the
set of states with the maximum utility πS = {s2} = x ∧ ¬y
as BDD, which is shown in Figure 1a (line 8). Finally, the
plan 〈o2〉, which leads to one of the state in πS (here s2),
is reconstructed (line 12), since the cost bound of b = 1 is
exceeded (line 4).

Theoretical Properties
In the following, we show that SYM-OSP is sound, complete
and optimal for oversubscription planning.

Proposition 1. Algorithm SYM-OSP is sound and complete
for oversubscription planning.

s0
¬x ∧ ¬y
u(s0) = 0

s1
¬x ∧ y
u(s1) = 0

s2
x ∧ ¬y
u(s2) = 2

s3
x ∧ y

u(s2) = 3

g = 0 g = 1 g = 2

b = 1

o1

o2 o3

Figure 2: Visualization of the transition system induced by
the oversubscription planning tasks Π in Example 1.

Proof. Any sequence of operators π that is applicable in
the initial state and whose cumulative cost is lower than the
cost bound b is a valid plan for an oversubscription plan-
ning task. Since SYM-OSP only expands states which are
reachable within the cost bound (line 4), and all the result-
ing sequences of actions are applicable, SYM-OSP therefore
returns only valid plans, proving that SYM-OSP is sound for
oversubscription planning.

Algorithm SYM-OSP terminates if one of the following
three cases occurs (line 4): 1) the entire reachable state space
has been explored (open = ∅), 2) there are no more states
that can be reached with costs less than the cost bound (g >
b) or (3) a state with maximum utility value has been found
(πu = max(u)). SYM-OSP expands all reachable states with
increasing reachability cost g without considering already
expanded states. Thus, at some point one of the condition
holds and a valid plan is returned, proving that SYM-OSP is
complete for oversubscription planning.

It is possible to show that SYM-OSP is optimal, meaning
that SYM-OSP returns utility-optimal plans (Definition 2) for
a given oversubscription planning task Π.
Proposition 2. Algorithm SYM-OSP is optimal for oversub-
scription planning.

Proof. SYM-OSP only terminates when a state with the high-
est possible utility value is found or all reachable states are
expanded within the given cost bound, in which case we
have considered all relevant states and their utility values.
Therefore, only plans with end states that have the highest
reachable utility value are returned, proving that SYM-OSP
is utility-optimal.

Note that SYM-OSP not only finds an utility-optimal plan,
but a cheapest utility-optimal plans, because SYM-OSP ex-
pands all reachable states with increasing costs. Finally, we
would like to point out that all presented theoretical results
also apply to symbolic uniform search, (Edelkamp and Kiss-
mann 2009; Torralba et al. 2017), referred to from now on
with SYM-OSP, that can be used to solve oversubscription
planning with general operator costs.

Backward and Bidirectional Search
The dominant search strategy of modern symbolic planners
(Torralba et al. 2014; Kissmann, Edelkamp, and Hoffmann



Algorithm SYM-OSP A?
uADD A?

mc BnB

Benchmark Set (# Inst.) uBDD uADD hblind hblind hb
max hb

m&s hblind hmc
lmcut

25% BOUND (1667) 1271 1274 1165 1197 1190 1074 1183 1151
50% BOUND (1667) 990 993 860 901 902 828 893 867
75% BOUND (1667) 866 862 718 758 738 734 735 702

100% BOUND (1667) 802 793 629 668 655 676 643 618

OVERALL (6668) 3929 3922 3372 3524 3485 3312 3454 3338

Table 1: Coverage of the presented symbolic algorithms and heuristic search approaches on the oversubscription planning
benchmark set which is based on the optimal track from the International Planning Competition 1998-2014 (Katz et al. 2019b).
The best coverage for each benchmark set, i.e. the maximum entry of each row, is highlighted in bold.

2014; Speck, Mattmüller, and Nebel 2020) is bidirectional
blind search (Torralba, Linares López, and Borrajo 2016;
Speck, Geißer, and Mattmüller 2020). However, it is not
straightforward to apply regression efficiently to oversub-
scription planning. In classical planning, the underlying idea
of symbolic backward search, i.e., regression, is to start with
the set of goal states and regress until the initial state is
found. This is possible because the set of goal states is repre-
sented as a compact but often under-specified goal formula.
However, since there is no goal formula in oversubscription
planning, the starting point of the regression is not obvious.
Since the objective is to find an end state with maximum
utility value, it might be possible to partition all states ac-
cording to their utility values and represent them as separate
BDDs by disassembling the ADD representing the utility
function. However, this would require to regress the entire
state space by regressing several BDDs with multiple back-
ward searches. All in all, it is not clear how to apply sym-
bolic regression efficiently to oversubscription planning. We
leave this task for future work.

Empirical Evaluation

The presented symbolic approaches to oversubscription
planning were implemented3 in the SYMBA (Torralba et al.
2014) planner, built on top of the FAST DOWNWARD plan-
ning system (Helmert 2006). The two approaches, SYM-
OSP uBDD and SYM-OSP uADD, perform symbolic forward
search (see Algorithm 1), with the difference being in the
way the utility of a set of states is evaluated. SYM-OSP uBDD
disassembles the utility function into multiple BDDs and
performs multiple intersections to determine the maximum
utility of a set of states, while SYM-OSP uADD uses a single
ADD. In practice, ADDs are often better suited to determine
the value of a single state in an explicit search, while a col-
lection of BDDs is considered more suitable for symbolic
search (Torralba 2015). In addition, we implemented A?

uADD

(Hart, Nilsson, and Raphael 1968) as an explicit search, rep-
resenting the utility function as an ADD to determine the
utility values of a single state. Algorithm A?

uADD with the
blind heuristic hblind is the explicit counterpart of the algo-
rithms SYM-OSP uBDD and SYM-OSP uADD.

3Available online: https://github.com/speckdavid/symbolic-osp

Setup

All experiments are conducted on the oversubscription plan-
ning benchmark set, based on the the optimal track from the
International Planning Competition (IPC) 1998-2014 (Katz
et al. 2019b), where goal facts are replaced with utilities. In
total, the benchmark set consists of four parts, each consist-
ing of the same 57 domains. The difference between the four
parts is the cost bound, which for each planning instance is
set at 25%, 50%, 75% or 100% of the cost of the optimal
or best known solution respectively. Note that several of the
domains contain operators with non-unit costs.

For comparison, publicly available planners are chosen
that support PDDL (McDermott 2000) and are state of the
art in oversubscription planning: branch-and-bound search
BnB (Katz et al. 2019a) and A?

mc search with multiple cost
functions (mc) (Katz and Keyder 2019). Both approaches
are based on reformulations that result in planning problems
with multiple separate cost functions, but no utility func-
tion. The branch-and-bound search BnB can use two separate
heuristics, one for guidance, i.e., to decide which node to
expand next, and one for pruning nodes. Such heuristics hmc

are computed on the reformulated planning problem with
multiple cost functions, while BnB is performed on the origi-
nal problem. We compare our approach against BnB with the
blind heuristic for guidance and the blind heuristic hblind and
the LM-cut heuristic hmc

lmcut (Helmert and Domshlak 2009)
for pruning, as proposed by Katz et al. (2019a). Note that the
known best performing configuration uses the blind heuris-
tic hblind for both heuristics (Katz et al. 2019a). A?

mc search
maintains multiple cost values for each state, one for each
cost function. In addition, A?

mc search for oversubscription
planning can utilize bound-sensitive heuristics which are
able to reason about the primary cost of a solution while tak-
ing into account secondary cost functions and bounds (Katz
and Keyder 2019). We compare with A?

mc search using the
blind heuristic hblind, the bound-sensitive max heuristic hb

max
(Bonet and Geffner 1999) and the bound sensitive merge-
and-shrink heuristic hb

m&s (Helmert et al. 2014) introduced
in Katz and Keyder (2019).

All experiments are run on a compute cluster with nodes
equipped with two Intel Xeon Gold 6242 32-core CPUs, 20
MB cache and 188 GB shared RAM running Ubuntu 18.04
LTS 64 bit. The planners are build with 64 bit and run with
a time limit of 30 minutes and memory limit of 4 GB.
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Figure 3: Runtime comparison of symbolic search and ex-
plicit search on the oversubscription planning benchmark set
which is based on the optimal track from the IPC 1998-2014.
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Experiments
Table 1 shows the coverage (sum of solved instances) of the
presented symbolic approaches compared to explicit heuris-
tic search approaches. Overall, as expected, the performance
decreases with increasing cost bounds, since a greater cost
bound generally requires more states to be considered and
expanded to find a plan and prove its optimality in oversub-
scription planning. Next, we analyze and discuss the pre-
sented symbolic approaches in detail before comparing them
to the state-of-the-art approaches that are based on an ex-
plicit heuristic search. Finally, we perform a per-domain
comparison of all approaches.

Symbolic approaches. Comparing the approaches using
symbolic data structures, we can observe that symbolic
search with a disassembled utility function in multiple
BDDs (SYM-OSP uBDD) works best overall. The configu-
ration SYM-OSP uADD, which represents the utility function
as a single ADD, performs only slightly worse overall and
better in the benchmark sets with smaller cost bounds (25%
and 50%). The main advantage of evaluating the utility val-
ues of the open list with BDDs compared to ADDs is that the
decision diagram library CUDD (Somenzi 2015) uses tech-
niques such as complement edges to store BDDs more com-
pactly (Brace, Rudell, and Bryant 1990). However, com-
plement edges are not used to represent ADDs. Therefore,
when the utility function is represented as an ADD, it is
necessary to transform the open list represented as a BDD
with complement edges into an ADD (without complement
edges). Depending on the structure of the BDD, this leads
to an overhead which can be avoided when representing the
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Table 2: Per-domain coverage comparison of different al-
gorithms on the complete oversubscription planning bench-
mark set (228 domains) which is based on the optimal track
from the IPC 1998-2014. The entry in row r and column c
shows the number of domains in which algorithm r solves
more tasks than algorithm c. For each pair of algorithms we
highlight the maximum of entries (r, c) and (c, r) in bold.

utility function as multiple BDDs. This is consistent with
the literature, where representation of numeric functions as
BDDs was shown in general to be more suitable for sym-
bolic search (Torralba 2015).

Observe that the time required to create the utility func-
tion as ADD is negligible in most instances. In over 6300
of 6668 instances it takes less than one second to create the
ADD, with a maximum in the remaining instances of about
two minutes. Also, the time for disassembling the ADD into
several BDDs (which is only carried out by SYM-OSP uBDD)
is not a bottleneck in most instances, because in over 5700
instances this process takes less than one second. However,
in 60 instances this procedure lasted more than two minutes.

A comparison of symbolic forward search to explicit
search, in which the utility function is represented symbol-
ically, i.e., as ADD, reveals a performance gap. Figure 3
compares the run times of SYM-OSP uADD and its explicit
counter part A?

uADD with the blind heuristic hblind. Note that
symbolic blind search performs better overall, especially
with increasing bounds, where the compact representation
gets more important. Most instances of the 100% benchmark
set are solved faster by symbolic forward search than by ex-
plicit forward search. In a few instances, however, explicit
blind search outperforms symbolic blind search. Apart from
implementation reasons, this has the explanation that in or-
der to carry out symbolic search, all necessary symbolic data
structures, such as the transition relations, have to be created
first, which in some cases does not pay off in terms of time
and memory. However, the dominance of symbolic search
can be traced back to theoretical properties of BDDs, such
as the fact that the number of nodes required to represent a
given set of states, is at most linear in the number of states
and variables. Further, it is possible to represent exponen-
tially many states (in the number of variables) with only a
polynomial number of nodes. For these reasons, symbolic
search is well suited for exhaustive state space exploration.
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Figure 4: Coverage over time of the presented symbolic algorithms in comparison to heuristic search approaches on the over-
subscription planning benchmark set which is based on the optimal track from the IPC 1998-2014.

Explicit heuristic approaches. A comparison between
symbolic forward search for oversubscription planning and
heuristic search algorithms based on reformulations shows
an advantage of symbolic search in terms of overall cover-
age (Table 1). Here as well, the difference in performance
between symbolic search and explicit heuristic search in-
creases with an increasing bound and thus increasing plan
length. The natural explanation is that heuristics do not pay
off, which is also why blind search performs best and, as
mentioned above, symbolic blind search is in practice often
preferable to explicit blind search. This observation is un-
derlined by Figure 4, which depicts the number of solved
instances over time. While symbolic search solves fewer in-
stances in the first seconds, after a short time it dominates all
other approaches, i.e., it solves more instances overall and
keeps this performance gap over time. Especially for greater
cost bounds, the advantage in overall coverage tends to in-
crease over time (Figures 4c and 4d), while it remains the
same for smaller cost bounds (Figures 4a and 4b).

Per-domain comparison. Table 2 shows a per-domain
comparison of the different approaches to oversubscription
planning. As in classical planning, symbolic and explicit
approaches shine in different domains. However, there is
a clear advantage to symbolic search over explicit heuris-
tic search overall. Symbolic search solves more instances in
more than twice as many domains than any explicit search

approach. Nevertheless, there are domains where explicit
heuristic search performs better than symbolic search. This
shows that, similar to classical planning, a potential portfolio
planner of these complementary search strategies could re-
sult in a state-of-the-art planner that combines both strengths
(Sievers et al. 2019).

Conclusion
We presented a novel approach to optimal oversubscrip-
tion planning, SYM-OSP, based on symbolic forward search
and proved that SYM-OSP is sound, complete and optimal.
Our empirical evaluation shows that SYM-OSP performs bet-
ter than other state-of-the-art approaches, for all tested cost
bounds. In addition, SYM-OSP scales to larger cost bounds
better than other approaches, making SYM-OSP suitable re-
gardless of the cost bound. However, as usual, there are do-
mains, where explicit heuristic search performs better than
symbolic search.

For future work, we would like to investigate symbolic
backward search for oversubscription planning, a necessary
condition for both performing bidirectional symbolic search
and a possible application of symbolic abstraction heuris-
tics (Edelkamp 2002) to oversubscription planning. Finally,
applying symbolic branch-and-bound search (Edelkamp and
Kissmann 2009; Kissmann 2012) to oversubscription plan-
ning is an interesting research direction.
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