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Abstract

In classical planning, the goal is to derive a course of actions that allows an
intelligent agent to move from any situation it finds itself in to one that satisfies
its goals. Classical planning is considered domain-independent, i.e., it is not
limited to a particular application and can be used to solve different types
of reasoning problems. In practice, however, some properties of a planning
problem at hand require an expressive extension of the standard classical
planning formalism to capture and model them. Although the importance of
many of these extensions is well known, most planners, especially optimal
planners, do not support these extended planning formalisms. The lack of
support not only limits the use of these planners for certain problems, but even
if it is possible to model the problems without these extensions, it often leads
to increased effort in modeling or makes modeling practically impossible as
the required problem encoding size increases exponentially.

In this thesis, we propose to use symbolic search for cost-optimal planning
for different expressive extensions of classical planning, all capturing different
aspects of the problem. In particular, we study planning with axioms, plan-
ning with state-dependent action costs, oversubscription planning, and top-k
planning. For all formalisms, we present complexity and compilability results,
highlighting that it is desirable and even necessary to natively support the
corresponding features. We analyze symbolic heuristic search and show that
the search performance does not always benefit from the use of a heuristic
and that the search performance can exponentially deteriorate even under
the best possible circumstances, namely the perfect heuristic. This reinforces
that symbolic blind search is the dominant symbolic search strategy nowadays,
on par with other state-of-the-art cost-optimal planning strategies. Based on
this observation and the lack of good heuristics for planning formalisms with
expressive extensions, symbolic search turns out to be a strong approach. We
introduce symbolic search to support each of the formalisms individually and
in combination, resulting in optimal, sound, and complete planning algorithms
that empirically compare favorably with other approaches.





Zusammenfassung

Bei der klassischen Planung besteht das Ziel darin, einen Handlungsablauf
zu finden, der es einem intelligenten Agenten ermöglicht, aus jeder Situation,
in der er sich befindet, in eine Situation zu gelangen, die seine Ziele erfüllt.
Die klassische Planung gilt als domänenunabhängig, d.h. sie ist nicht auf eine
bestimmte Anwendung beschränkt und kann zur Lösung verschiedener Arten
von Logikproblemen verwendet werden. In der Praxis erfordern jedoch eini-
ge Eigenschaften eines vorliegenden Planungsproblems eine ausdrucksstarke
Erweiterung des klassischen Standardplanungsformalismus, um sie zu erfas-
sen und zu modellieren. Obwohl die Bedeutung vieler dieser Erweiterungen
bekannt ist, unterstützen die meisten Planer, insbesondere optimale Planer,
diese erweiterten Planungsformalismen nicht. Die fehlende Unterstützung
schränkt nicht nur die Verwendung dieser Planer für bestimmte Probleme ein,
sondern selbst wenn es möglich ist, die Probleme ohne diese Erweiterungen
zu modellieren, führt dies oft zu einem erhöhten Aufwand bei der Modellie-
rung oder macht die Modellierung praktisch unmöglich, da die erforderliche
Problemkodierungsgröße exponentiell ansteigt.

In dieser Arbeit schlagen wir vor, die symbolische Suche für kostenoptima-
le Planung für verschiedene ausdrucksstarke Erweiterungen der klassischen
Planung zu verwenden, die alle unterschiedliche Aspekte des Problems erfas-
sen. Insbesondere untersuchen wir die Planung mit Axiomen, die Planung mit
zustandsabhängigen Aktionskosten, die “Oversubscription Planung” und die
“Top-k Planung”. Für alle Formalismen präsentieren wir Ergebnisse zur Komple-
xität und Kompilierbarkeit, wobei wir hervorheben, dass es wünschenswert und
sogar notwendig ist, die entsprechenden Aspekte nativ zu unterstützen. Wir
analysieren die symbolische heuristische Suche und zeigen, dass die Suchleis-
tung nicht immer von der Verwendung einer Heuristik profitiert und dass die
Suchleistung selbst unter den bestmöglichen Umständen, nämlich der perfekten
Heuristik, exponentiell abnehmen kann. Dies unterstreicht, dass die symbo-
lische blinde Suche heutzutage die dominierende symbolische Suchstrategie
ist, änlich gut wie anderen modernen kostenoptimalen Planungsstrategien.
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Basierend auf dieser Beobachtung und dem Mangel an guten Heuristiken für
Planungsformalismen mit ausdrucksstarken Erweiterungen, erweist sich die
symbolische Suche als ein starker Ansatz. Wir erweitern die symbolische Suche,
um jeden der Formalismen einzeln und in Kombination zu unterstützen, was
zu optimalen, korrekten und vollständigen Planungsalgorithmen führt, die sich
im Vergleich zu anderen Ansätzen empirisch besser verhalten.
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CHAPTER 1
Introduction

If you fail to plan, you are planning to fail.
— Benjamin Franklin

Automated planning is the science of designing and engineering machines,
in particular computer programs, that can automatically derive behaviors to
achieve goals. The generation of such strategies, i.e., thinking before acting,
is understood as an intelligent behavior and is one of the oldest areas in the
field of Artificial Intelligence. Nowadays, a classical planning problem can be
informally described as the problem of finding a course of actions that allows
an intelligent agent to move from any situation it finds itself in to one that
satisfies its goals. Since planning is not limited to a specific application domain,
it was originally labeled as general problem solving (Helmert 2008; Newell and
Simon 1963) and can be used for different types of reasoning problems, such
as elevator control (Koehler and Schuster 2000), greenhouse logistics (Helmert
and Lasinger 2010), natural-language generation (Koller and Hoffmann 2010),
robot control (Karpas and Magazzeni 2020; Nilsson 1984; Speck, Dornhege,
and Burgard 2017), risk management (Katz, Srinivas, et al. 2021; Sohrabi,
Riabov, Katz, et al. 2018), and many more.

In classical planning, some properties of a planning problem at hand require
an expressive extension of the standard classical planning formalism to capture
them in a concise way. In this thesis, we consider four different extensions
of classical planning (Figure 1.1), all of which capture and extend different
aspects of classical planning while retaining the core of the formalism: Single-
agent planning problems in a fully observable, static, discrete, deterministic,
and fully known environment (Russell and Norvig 2003). Unfortunately, most
classical planners do not support any of these expressive extensions because
they are usually based on heuristic search and it appears very challenging to
design informative and fast to compute heuristics (goal-distance estimators)
that consider additional problem properties. This is especially true for cost-
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Figure 1.1: Overview of extensions for classical planning, where the blue color
denotes the planning formalism supported by symbolic search approaches from
the literature.

optimal planners, which additionally require that a heuristic is admissible, i.e.,
that the heuristic never overestimates the cost of reaching a goal state. However,
it is well known that such extensions are critical for an elegant and compact
modeling of many real-world problems. For example, extending the state
description to include derived variables allows aspects of a planning problem
that are not directly affected by the actions but are derived from the values of
other variables to be modeled concisely using a set of logical axioms (Thiébaux,
Hoffmann, and Nebel 2005). While in probabilistic planning a concise encoding
of action costs or rewards in form of Markov decision processes has long
been standard, in classical planning it is common to consider a potentially
exponentially larger representation with constant action costs (Geißer 2018).
In many real-world applications, the description of goals is oversubscribed,
i.e., there are a large number of desirable, often competing goals of varying
value, and a system may not be able to achieve all of them with the available
resources (Smith 2004). Unfortunately, conventional classical planning cannot
handle such a scenario, because the goal is treated as a hard constraint that
can either be accomplished or not. Finally, in some cases, a single plan may be
sufficient, but in practice it is often better to have many good alternatives to
choose from in order to be more flexible (Nguyen et al. 2012).
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In this thesis, we investigate and discuss the computational complexity and
compilability of classical planning incorporating the four expressive extensions
mentioned earlier. This analysis shows and highlights that for many real-world
problems, it is desirable and even necessary to support these features natively.
We propose for the first time to use symbolic search for cost-optimal planning
for those four expressive extensions (see Figure 1.1). Symbolic search pro-
vides a good basis for native support of these planning formalisms for several
reasons. A theoretical and empirical analysis of symbolic heuristic search in
the form of BDDA? shows that the use of a heuristic in symbolic search does
not always improve search performance. This observation strengthens the fact
that nowadays symbolic blind search, i.e., without heuristics, is the dominant
search strategy of symbolic search, on par with explicit heuristic search in
cost-optimal planning. Thus, since symbolic search does not necessarily need
heuristics to be efficient, the search efficiency does not suffer from the lack of
efficient and informative heuristics for the proposed planning scenarios. Based
on these observations, we enhance symbolic search to obtain optimal, sound,
and complete algorithms for planning with the expressive extensions under
consideration. Our empirical evaluations show that the presented symbolic
search approaches perform favorably in all these planning settings compared
with other state-of-the-art approaches. Finally, we show that the proposed
symbolic search approach is able to support planning tasks that use and require
all expressive extensions at once.

1.1 Outline

This thesis is structured as follows. In Chapter 2, we introduce the relevant
background for this thesis concerning classical planning. In particular, we
introduce the concepts of complexity, compilability and expressive power and
present symbolic search for classical planning together with different types of
decision diagrams. In Chapter 3, we investigate the question, why heuristics
do not seem to pay off in symbolic search. Specifically, we theoretically and
empirically analyze the search behavior of symbolic heuristic search in form of
BDDA? (Speck, Geißer, and Mattmüller 2020). In Chapter 4, we summarize
computational complexity and compilability results for planning with axioms
from the literature. We introduce three ways to extend symbolic search algo-
rithms to support axioms natively and present an empirical evaluation (Speck,
Geißer, Mattmüller, and Torralba 2019). In Chapter 5, we present computa-
tional complexity and compilability results for planning with state-dependent
action costs (Speck, Borukhson, et al. 2021). Then, symbolic search algorithms
for planning with state-dependent action costs are presented and an empirical
evaluation is conducted (Speck, Geißer, and Mattmüller 2018a). In Chapter 6,
we discuss computational complexity and compilability results for oversub-
scription planning. A symbolic search approach is presented and explained for
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oversubscription planning and an empirical evaluation is conducted (Speck
and Katz 2021). In Chapter 7, we present computational complexity and com-
pilability results for top-k planning and introduce symbolic search for it, which
we analyze theoretically and empirically (Speck, Mattmüller, and Nebel 2020).
In Chapter 8, we discuss the combination of the previously analyzed extensions
for classical planning and the use of symbolic search for such a setting. Finally,
possible future work related to this thesis is discussed. Chapter 9 concludes
and summarizes this thesis.

1.2 Published Work

The core results presented in this work have been published at leading AI and
automated planning conferences. In particular, the following publications form
the backbone of this work. At the beginning of each chapter, we indicate which
publications form the basis for the content of the chapter.

• David Speck, David Borukhson, Robert Mattmüller, and Bernhard Nebel
(2021). “On the Compilability and Expressive Power of State-Dependent
Action Costs”. In: Proceedings of the Thirty-First International Conference
on Automated Planning and Scheduling (ICAPS 2021). Ed. by Robert P.
Goldman, Susanne Biundo, and Michael Katz. AAAI Press, pp. 358–366.
(Best Student Paper Runner-Up Award)

• David Speck and Michael Katz (2021). “Symbolic Search for Oversub-
scription Planning”. In: Proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI 2021). Ed. by Kevin Leyton-Brown and
Mausam. AAAI Press, pp. 11972–11980.

• David Speck, Florian Geißer, and Robert Mattmüller (2020). “When Per-
fect Is Not Good Enough: On the Search Behaviour of Symbolic Heuristic
Search”. In: Proceedings of the Thirtieth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2020). Ed. by J. Christopher Beck,
Erez Karpas, and Shirin Sohrabi. AAAI Press, pp. 263–271.

• David Speck, Robert Mattmüller, and Bernhard Nebel (2020). “Symbolic
Top-k Planning”. In: Proceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI 2020). Ed. by Vincent Conitzer and Fei Sha.
AAAI Press, pp. 9967–9974.

• David Speck, Florian Geißer, Robert Mattmüller, and Álvaro Torralba
(2019). “Symbolic Planning with Axioms”. In: Proceedings of the Twenty-
Ninth International Conference on Automated Planning and Scheduling
(ICAPS 2019). Ed. by Nir Lipovetzky, Eva Onaindia, and David E. Smith.
AAAI Press, pp. 464–472.
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• David Speck, Florian Geißer, and Robert Mattmüller (2018a). “Symbolic
Planning with Edge-Valued Multi-Valued Decision Diagrams”. In: Proceed-
ings of the Twenty-Eighth International Conference on Automated Planning
and Scheduling (ICAPS 2018). Ed. by Mathijs de Weerdt, Sven Koenig,
Gabriele Röger, and Matthijs Spaan. AAAI Press, pp. 250–258.
(Partly based on ideas from my master thesis)

The following publications also resulted from my doctoral research, but
are not a central part of this thesis. However, some of the ideas and concepts
presented in this thesis were used in these research papers.

• David Speck, André Biedenkapp, Frank Hutter, Robert Mattmüller, and
Marius Lindauer (2021b). “Learning Heuristic Selection with Dynamic
Algorithm Configuration”. In: Proceedings of the Thirty-First International
Conference on Automated Planning and Scheduling (ICAPS 2021). Ed. by
Robert P. Goldman, Susanne Biundo, and Michael Katz. AAAI Press,
pp. 597–605.

– David Speck, André Biedenkapp, Frank Hutter, Robert Mattmüller,
and Marius Lindauer (2020b). “Learning Heuristic Selection with
Dynamic Algorithm Configuration”. In: ICAPS 2020 Workshop on
Bridging the Gap Between AI Planning and Reinforcement Learning
(PRL), pp. 61–69. (superseded)

• Dominik Drexler, Jendrik Seipp, and David Speck (2021). “Subset-
Saturated Transition Cost Partitioning”. In: Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICAPS
2021). Ed. by Robert P. Goldman, Susanne Biundo, and Michael Katz.
AAAI Press, pp. 131–139.

– Dominik Drexler, David Speck, and Robert Mattmüller (2020).
“Subset-Saturated Transition Cost Partitioning for Optimal Classical
Planning”. In: ICAPS 2020 Workshop on Heuristics and Search for
Domain-independent Planning (HSDIP), pp. 23–31. (superseded)

• Gregor Behnke and David Speck (2021). “Symbolic Search for Total-
Order HTN Planning”. In: Proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI 2021). Ed. by Kevin Leyton-Brown and
Mausam. AAAI Press, pp. 11744–11754.

• Florian Geißer, David Speck, and Thomas Keller (2020). “Trial-Based
Heuristic Tree Search for MDPs with Factored Action Spaces”. In: Pro-
ceedings of the 13th Annual Symposium on Combinatorial Search (SoCS
2020). Ed. by Daniel Harabor and Mauro Vallati. AAAI Press, pp. 38–47.
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• Sumitra Corraya, Florian Geißer, David Speck, and Robert Mattmüller
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• Florian Geißer, David Speck, and Thomas Keller (2019). “An Analysis
of the Probabilistic Track of the IPC 2018”. In: ICAPS 2019 Workshop on
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• David Speck, Florian Geißer, and Robert Mattmüller (2018b). “SYMPLE:
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CHAPTER 2
Background to Classical Planning

[Binary Decision Diagrams are] one of the only
really fundamental data structures that came out
in the last twenty-five years.

— Donald Knuth (2008)

In AI planning, the objective is to automatically find a solution (a plan)
to a given problem (a planning task). In this chapter, we formally define
classical planning and discuss the concepts of complexity, compilability and
expressive power in this context. Finally, symbolic search for classical planning
is presented and different types of decision diagrams are introduced.

2.1 Formalism

In this thesis, we consider classical planning domains and tasks that are char-
acterized by the SAS+ formalism (Bäckström and Nebel 1995).

Definition 1 (Planning Domain). A planning domain is a tuple Ξ = 〈V,O, C〉.
V is a finite set of state variables, each associated with a finite domain Dv =
{0, . . . , |Dv|−1}. A fact is a pair (v, d), where v ∈ V and d ∈ Dv. For binary
variables we also write v for (v, 1) and ¬v for (v, 0). A partial state or partial
variable assignment s over V is a function on some subset of V such that
s(v) ∈ Dv, wherever s(v) is defined. If s assigns a value to each variable
v ∈ V, s is called a state. With S we refer to the set of all possible states
defined over V. O is a finite set of operators/actions, where each operator
is a pair o = 〈preo, eff o〉 of partial variable assignments, called preconditions
and effects. An operator o ∈ O is applicable in a state s iff preo is satisfied
in s, i.e., preo ⊆ s. Applying operator o to state s yields the state s[o] = s′,
where s′(v) = eff o(v) for all variables v ∈ V for which eff o is defined and
s′(v) = s(v) otherwise. Finally, C : O → N0 is the cost function of Ξ. The size
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of Ξ is ||Ξ||= ∑
v∈V |Dv|+

∑
o∈O(|preo|+|eff o|) + ||C||, where ||C|| is bounded

by |O|·dlog2Ne, where N is the highest action cost value.

Planning domains together with initial states and goal descriptions form
planning tasks.

Definition 2 (Planning Task). A planning task is a tuple Π = 〈Ξ, I,G,B〉
consisting of a planning domain, an initial state I ∈ S, a partial variable
assignment G (goal condition), which defines all possible goal states S? ⊆ S,
and a cost bound B ∈ N0 ∪ {∞}. For simplicity, we also write 〈V,O, C, I,G〉
for a planning task with domain Ξ = 〈V,O, C〉 and B = ∞. The size of Π is
||Π||= ||Ξ||+|G|+|I|+||B||, where ||B||= dlog2Be is the binary encoding size
of the cost bound.

A planning task is often defined without a cost bound B, which is equivalent
to setting the cost bound to infinity (or a sufficient upper bound). However, we
use planning tasks with cost bounds to perform complexity and compilability
analyses in this dissertation.

The objective of classical planning is to determine plans, which are se-
quences of applicable actions leading from the initial state to a goal state,
respecting the given cost bound B.

Definition 3 (Plan). A plan π = 〈o0, . . . , on−1〉 for planning task Π is a se-
quence of applicable operators that generates a sequence of states s0, . . . , sn,
where s0 = I, sn ∈ S? is a goal state, si+1 = si[oi] for all i = 0, . . . , n − 1,
and the cost of π is less than or equal to the cost bound B, i.e., cost(π) =∑n−1
i=0 C(oi) ≤ B. Plan π is optimal if there is no cheaper plan. We call ||π||= n

the length or size of π. With PΠ we refer to the (possibly infinite) set of all plans
for a planning task Π.

The search for an optimal plan, i.e., a plan with the lowest cost, is called
cost-optimal planning, or optimal planning for short, and is the focus of this
thesis. Example 1 describes a classical planning domain and task of a Mars
rover, which we will use in this work to motivate and explain expressive
features that extend the classical planning formalism.

Example 1. Consider a Mars rover like Perseverance1 equipped with a drone
like Ingenuity1, which are designed to perform autonomous tasks. Such a
scenario is illustrated in Figure 2.1. The dynamics of this example, i.e., the
domain, are as follows.

The rover can navigate between adjacent cells if they are free (impassable
cells are highlighted in red). Navigating the rover between cells has no cost,
i.e., a cost of 0. The drone can launch and land on the rover if both are in the
same location. Launching and landing each has a cost of 5. In addition, the

1https://mars.nasa.gov/mars2020/mission/overview/ (Accessed: 2021-10-12)

https://mars.nasa.gov/mars2020/mission/overview/
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Figure 2.1: Visualization of the Mars rover planning task used as a running
example. The original image is from NASA/JPL-Caltech/University of Arizona2

and shows the Jezero crater, where the green dot indicates the actual landing
site of the Perseverance rover. Rover, drone, grid lines, red coloring (impassable
cells for the rover), camera (goal: take pictures), and arrow (goal: cell to
which the rover should travel with the drone) are added.

drone can take an image at its current position at a cost of 2 and fly between
any two cells, ignoring the impassability of cells to the rover. The cost of
flying from one cell from = (x, y) to another cell to = (x′, y′) is the Manhattan
distance between these two cells, i.e., |x− x′|+|y − y′|.

In this particular planning task, the rover along with the drone is initially
located at (7,3), the actual landing site of Perseverance. The goal is to take
pictures at (6,1) and (10,1) and travel with the drone equipped to (0,5), a
location known as “Three Forks” from which new missions can be commenced.
The cost bound for this task is infinite.

An optimal plan for this task is πr = 〈navigate-7-2, navigate-7-1, launch-7-1,
fly-7-1-to-6-1, take-img-6-1, fly-6-1-to-10-1, take-img-10-1, fly-10-1-to-7-1,
land-7-1, navigate-7-2, navigate-7-3, . . . , navigate-0-5〉 with a cost of cost(πr) =
5 + 5 + 2 · 2 + 8 = 24, since navigating the rover costs 0, the drone launches
and lands once with a cost of 5 each, takes images twice with a cost of 2 each,
and flies a total distance of 8 cells.

2https://mars.nasa.gov/resources/25621/perseverances-landing-spot-in-jeze
ro-crater/ (Accessed: 2021-10-12)

https://mars.nasa.gov/resources/25621/perseverances-landing-spot-in-jezero-crater/
https://mars.nasa.gov/resources/25621/perseverances-landing-spot-in-jezero-crater/
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2.2 Complexity and Compilations

A natural question that arises is how hard planning is in general. More precisely,
the bounded plan existence problem of planning is the problem of deciding for
a given planning task Π whether there exists a plan. It was shown that this
problem is PSPACE-complete for STRIPS (Bylander 1997) and SAS+ planning
tasks (Bäckström and Nebel 1995).

Theorem 1 (Bylander 1994). Bounded plan existence of planning is PSPACE-
complete.

Interestingly, if two planning formalisms belong to the same complexity
class, it does not directly mean that both have the same expressive power.
Expressive power is a measure of how concisely planning domains and plans
can be expressed in a given formalism with compilation schemes (Nebel 2000).
In the further course of this work, we will use compilation schemes to show
whether and under which conditions certain model extensions such as derived
variables or state-dependent action costs can be compiled away, i.e., expressed
in the original formalism as a classical planning task.

The following definition formalizes compilation schemes, which translate
from one planning formalism to another while preserving plan existence and
polynomially preserving task sizes.

Definition 4 (Compilation Scheme). A compilation scheme or, in short, a
compilation is a tuple of functions f = 〈fξ, fι, fg〉 on planning domains that
induces a function on planning tasks as follows:

F (Π) =〈fξ(Ξ), I ∪ fι(Ξ),G ∪ fg(Ξ),B〉,

where Π = 〈Ξ, I,G,B〉, satisfying the following conditions:

1. there exists a plan for F (Π) iff there exists a plan for Π, and

2. the size of the results of fξ, fι, and fg is polynomial in the size of the
arguments.

Note that our definition of a compilation is “cost-sensitive”. By not allowing
the cost bound to change, we ensure that for every plan in the original task,
there must be a plan with cost at most B in the target task, and vice versa.
Besides preserving planning task sizes polynomially, another desirable property
is preservation of plan lengths. This is captured by the following definition.

Definition 5 (Compilations Preserving Plan Length). A compilation scheme
f is said to preserve plan length exactly (modulo an additive constant) if for
every plan π solving an instance Π, there exists a plan π′ solving F (Π) with
||π′|| ≤ ||π||+k for some constant k ∈ N0. It is said to preserve plan length
linearly if ||π′|| ≤ c · ||π||+k for constants c ∈ N0 and k ∈ N0, and to preserve
plan length polynomially if ||π′|| ≤ p(||π||, ||Π||) for some polynomial p.



2.3. SYMBOLIC SEARCH 11

Intuitively, compilability while exactly preserving the plan length shows
that the planning formalism we use as the target formalism is at least as
expressive as the source formalism. If compilation requires polynomial or
even exponential plan growth, this can lead to an infeasible challenge for
planning algorithms that indicates an increase in expressive power (Nebel
2000; Thiébaux, Hoffmann, and Nebel 2005).

2.3 Symbolic Search

Symbolic search is a state space exploration technique that has its origin in
the field of Model Checking (McMillan 1993). Symbolic search algorithms
resemble their explicit counterparts, but expand and generate whole sets of
states in contrast to individual states. In symbolic search, a set of states S ⊆ S

is represented by its characteristic function χ
S , which is a Boolean function

χ
S : S → {0, 1} that represents whether a given state belongs to S or not.

More precisely, states contained in S are mapped to 1 and all others to 0,
i.e., χS(s) = 1 if s ∈ S and χS(s) = 0 otherwise. Similarly, operators O can
be represented as so-called transition relations (TRs), which are sets of state
pairs, namely predecessor and successor states. The characteristic function of
a transition relation TO representing a set of operators O ⊆ O is a function
χ
TO

: S × S → {0, 1} that maps all pairs of states (s, s′) to true iff successor
s′ ∈ S is reachable from predecessor s ∈ S by applying an operator o ∈ O.
Given a set of states S and a TR TO, the image (preimage) operator computes
the set of successor (predecessor) states S′ of S through TO. Note that a single
TR can in general represent multiple operators with the same cost (Torralba,
Alcázar, et al. 2017; Torralba, Edelkamp, and Kissmann 2013).

Symbolic (blind) search describes a symbolic version of uniform cost search,
also known as Dijkstra’s algorithm (Dijkstra 1959), which can be performed
in different search directions. Symbolic forward (blind) search (progression)
starts from the representation of the initial state χI , and iteratively computes
the image until a set of states S is found whose intersection with the goal χG
is non-empty, i.e., χS ∧ χG 6= ⊥. The open and closed list are represented as
lists of state sets partitioned into subsets with identical g-values, where the
g-value describes the cost required to reach these states. During the search, the
closed list is used to track and prune states that have already been expanded.
Symbolic backward (blind) search (regression) can be realized by starting with
the goal states, applying the preimage operation until the initial state is found.
In symbolic bidirectional (blind) search, both forward and backward symbolic
search are performed simultaneously, maintaining two symbolic searches with
separate open and closed lists. A search step consists either of a backward or a
forward search step (and modifies the respective open and closed lists). If a
state of the current search direction is expanded, which is already contained in
the closed list of the search in the opposite direction, a goal path is found. In
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general, all strategies, which switch iteratively between both search directions,
guarantee optimality if the termination criterion is chosen accordingly (Pohl
1969).

Finally, a plan reconstruction (Torralba 2015) is performed to obtain the
final plan. In explicit search, each (search) node keeps track of its parent node,
making it easy to construct a plan when a goal state is found. In symbolic
search, however, the parents are not directly known, but all parents are stored
in the closed list with their reachability costs. Therefore, it is possible to
perform a greedy search, which opposes the actual search direction with the
perfect heuristic (cost of shortest path) obtained by the corresponding closed
list. In forward (backward) symbolic search the plan is constructed by a greedy
backward (forward) search starting with a found goal state (the initial state).
The plan reconstruction procedure iterates over all operators (descending cost)
and selects an explicit predecessor (successor) contained in the closed list. The
latter process is repeated until the initial state (a goal state) is reached. Note
that a greedy search in combination with the perfect heuristic leads the search
directly from a starting state to a target state, making the runtime of the plan
reconstruction negligible with respect to the actual search. For bidirectional
search, a greedy best-first search is performed twice, both opposing the actual
search direction. More specifically, both plan reconstructions are initialized
with the meeting point and one search is a regression to the initial state, while
the other search is a progression to the goal states.

2.4 Decision Diagrams

In symbolic search the most prominent way to represent (characteristic) func-
tions are decision diagrams such as Binary Decision Diagrams (BDDs) (Bryant
1985), Algebraic Decision Diagrams (ADDs) (Bahar et al. 1997) or Edge-Valued
Binary Decision Diagrams (EVBDDs) (Lai, Pedram, and Vrudhula 1996) which
are data structures that offer a compromise between conciseness of repre-
sentation and efficiency of manipulation (Drechsler and Becker 1998a). The
main idea is to break down a function f into subfunctions, so that f can be
reassembled from them.

Definition 6 (Binary Decision Diagram). A Binary Decision Diagram (BDD)
BS is a directed acyclic graph with a single root node and two terminal nodes:
the 0-sink and the 1-sink. Each inner node corresponds to a binary3 variable
v ∈ V and has two successors, where the low edge represents that variable v is
false, while the high edge represents that variable v is true. By traversing the

3Note that each finite domain variable v ∈ V can be represented by dlog2|Dv|e binary
variables. Although there are generalizations for each type of decision diagram to support
multi-valued variables directly, this dissertation mainly considers decision diagrams that support
only binary variables, unless explicitly stated otherwise.
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BDD according to a given assignment, the represented Boolean function χS
can be evaluated.

ADDs and EVBDDs have been successfully used to represent numerical
functions f : S→ Q∪{∞} (Hansen, Zhou, and Feng 2002; Speck, Geißer, and
Mattmüller 2018b; Torralba, Linares López, and Borrajo 2013) in symbolic
planning. An Algebraic Decision Diagrams (ADD) Af is similar to a BDD, but has
an arbitrary number of terminal nodes with different discrete values including
real numbers. An Edge-Valued Binary Decision Diagram (EVBDD) Ef is a rooted
directed acyclic graph with edge values, a dangling incoming edge to the root
node and a single terminal node. The function f can be evaluated by traversing
the graph according to the variable assignment and simultaneously adding up
the edge weights. The resulting sum is the function value for the corresponding
variable assignment. In practice, the generalization of EVBDDs, so-called Edge-
Valued Multi-valued Decision Diagrams (EVMDDs) (Ciardo and Siminiceanu
2002), where variables can be multi-valued, is more common in planning than
EVBDDs (Geißer, Keller, and Mattmüller 2015, 2016; Mattmüller et al. 2018).

Decision diagrams are typically considered in a reduced and ordered form
(Becker and Molitor 2008) and can represent exponentially many states re-
quiring only polynomial space. A decision diagram is called ordered if on all
paths from the root to a sink variables appear in the same order. A decision
diagram is called reduced if isomorphic subgraphs are merged and any node is
eliminated whose two children are identical. For fixed variable orders, reduced
and ordered decision diagrams are unique (Bahar et al. 1997; Bryant 1986; Lai,
Pedram, and Vrudhula 1996). Note that for EVMDDs the corresponding edge
values must be taken into account. From now on we only talk about reduced
and ordered decision diagrams and assume a fixed variable order.

Definition 7 (Decision Diagram Size). The size |D| of a decision diagram D
is the number of nodes of D.

The size of a decision diagram depends strongly on the variable order, so
that a good order can lead to an exponentially more compact decision diagram
(Edelkamp and Kissmann 2011). For some functions the size of the correspond-
ing decision diagram is exponential, independent of the underlying variable
order (Bryant 1986; Edelkamp and Kissmann 2011). Comparing the different
types of decision diagrams, we can see that an EVBDD can be exponentially
more compact than an ADD (Siminiceanu and Roux 2010) representing ad-
ditively separable functions such as f : {0, 1}n+1 → {0, . . . , 2n+1 − 1} with
f(x0, . . . , xn) =

∑n
i=0 2ixi. Moreover, an ADD can be efficiently disassembled

into multiple BDDs, one for each terminal node, in polynomial time and mem-
ory with respect to the ADD size by substituting terminal nodes (Torralba 2015).
In practice, the main advantage of using BDDs over ADDs (and EVBDDs) is
that decision diagram libraries such as CUDD (Somenzi 2015) use techniques
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Figure 2.2: Visualization of different decision diagrams.

such as complement edges to store BDDs more compactly (Brace, Rudell, and
Bryant 1990) and allow for more efficient operations (Burch et al. 1994).

Example 2. Figures 2.2a and 2.2b show the ADD Af and EVBDD Ef represent-
ing the numeric function f = 2x+ xy. The function f can also be represented
as multiple BDDs by disassembling the ADD Af into three different BDDs, one
for each terminal node. Figures 2.2c to 2.2e depict the BDDsBf=z representing
all states for which the evaluation of function f = 2x+ xy is z. The variable
order for all decision diagrams is x � y, i.e., x appears before y on each path.

From now on, when we refer to state sets, characteristic functions and
numerical functions, we assume that they are represented as one of the corre-
sponding decision diagrams and all logical or numerical operations are realized
with the efficient and appropriate decision diagram-based operations using the
APPLY algorithm (Bahar et al. 1997; Bryant 1986; Lai, Pedram, and Vrudhula
1996). If it is important which type of decision diagram we have used to
represent certain functions, we will specify it explicitly.



CHAPTER 3
Symbolic Heuristic Search

While the main observations of this paper are
both intuitive and pretty obvious, I still consider
the work a significant contribution in focusing
attention on a key and often overlooked difference
between explicit and symbolic search [. . . ].

— Reviewer #3 (2020)

Core Publication of this Chapter

• David Speck, Florian Geißer, and Robert Mattmüller (2020). “When Per-
fect Is Not Good Enough: On the Search Behaviour of Symbolic Heuristic
Search”. In: Proceedings of the Thirtieth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2020). Ed. by J. Christopher Beck,
Erez Karpas, and Shirin Sohrabi. AAAI Press, pp. 263–271.

Explicit search and symbolic search have been shown to be strong and
competitive approaches for optimal classical planning. While explicit search
usually occurs as variants of forward A? search (Hart, Nilsson, and Raphael
1968), which are equipped with strong and efficient goal-distance heuristics,
symbolic search is usually performed as (bidirectional) blind search, i.e., with-
out heuristics. This naturally raises the question of why not combine the two
techniques to obtain a planning algorithm that combines the state pruning of
explicit heuristic search with the concise representation of symbolic search.
This combination is referred to as symbolic heuristic search, which includes a
variety of symbolic generalizations of A? for different decision diagrams such as
BDDA? (Edelkamp and Reffel 1998), ADDA? (Hansen, Zhou, and Feng 2002)
and EVMDDA? (Speck, Geißer, and Mattmüller 2018a).
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Figure 3.1: Illustration of BDDA?, where the cells represent state sets Sg,h and
the arrows denote successor state sets. The gray cells are expanded in the
order indicated by the numbers (Torralba 2015; Torralba and Gnad 2017).

The underlying idea of symbolic A? search is to precompute and represent
a heuristic function h with decision diagrams, where h : S → N0 ∪ {∞} such
that h(s?) = 0 for all s? ∈ S?. Symbolic operations are then used to assign the
corresponding f -values (f = g+ h) to each state of a set of states Sg reachable
with cost g. As usual with A?, symbolic A? expands the states in ascending
order of the f -value and uses a tie-breaking rule in favor of states with smaller
g-values (Kissmann and Edelkamp 2011; Torralba 2015). To guarantee optimal
solutions, a consistent heuristic is assumed, i.e., its estimate is always less than
or equal to the estimated distance from each direct successor to the goal, plus
the cost to reach that successor, i.e., h(s) ≤ h(s[o]) + C(o). Note that any
consistent heuristic is also admissible, i.e., never overestimates the cost of
reaching a goal state (Pearl 1984). Two important examples of consistent
heuristics and at the same time the extreme cases are the perfect heuristic h?,
which maps any state s to the cost of the cheapest path from s to any goal
state, and the blind heuristic hblind, which maps any state s to 0.

In BDDA?, a consistent heuristic function is precomputed and represented
by multiple BDDs, one for each heuristic value h, where each BDD is used
to represent the states Sh with heuristic value h. During search, states Sg
reachable with cost g are partitioned according to their heuristic value by
computing the intersections of Sg and Sh for each heuristic value h resulting
in sets of states Sg,h. Example 3 exemplifies how BDDA? works.

Example 3. We consider a planning task with unit costs. BDDA? starts with
the state set S0,2 = {I}, which contains only the initial state with a g-value of 0
and an h-value of 2 (Figure 3.1a). The expansion of S0,2 leads to sets of states
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with g-value of 1 and different h-values. Next, the state set S1,1 is expanded,
then S1,2, and so on until a goal state is contained in S4,0 (Figure 3.1b).

While BDDA? utilizing a heuristic expands fewer states, symbolic blind
search (BDDA? with hblind) potentially expands fewer sets of states. Moreover,
as Speck, Geißer, and Mattmüller (2020) have shown and we will examine
in this chapter, the BDD representation of the state sets can deteriorate if the
states are partitioned according to their h-values.

There are several heuristics that can be precomputed and represented using
symbolic search and decision diagrams, leading to cutting-edge performance
in explicit heuristic search (Edelkamp 2002; Franco, Lelis, and Barley 2018;
Franco, Torralba, et al. 2017; Moraru et al. 2019). Thus, all the ingredients
are present to allow a symbolic planner utilizing heuristics, as explicit planners
do. However, Jensen, Veloso, and Bryant (2008) identified the partitioning of
state sets according to their heuristic values as a bottleneck, because multiple
arithmetic operations have to be performed during search. This leads to
different extension of BDDA? to overcome this bottleneck such as Lazy BDDA?

(Torralba 2015), which delays the heuristic evaluation as long as possible, or
SetA? (Jensen, Veloso, and Bryant 2008), which encodes the heuristic values
as preconditions of actions resulting in multiple actions with costs according to
the heuristic values. However, empirical evaluations show that all versions of
BDDA? perform better than symbolic blind search in some domains but overall
symbolic bidirectional search without any heuristic performs best (Torralba,
Linares López, and Borrajo 2016).

In the remainder of this chapter, we describe and summarize the results
of Speck, Geißer, and Mattmüller (2020), which theoretically and empirically
evaluate the search behavior of BDDA?. On the theoretical side, this study
reveals another fundamental problem of symbolic heuristics, namely that the
use of a heuristic does not always improve the search performance of BDDA?,
as it may affect the size of the representation. In general, even the perfect
heuristic can exponentially deteriorate the search performance of symbolic A?.
The empirical evaluation is consistent with these theoretical results. Finally, we
conclude this chapter with a discussion of the implications of these findings.

3.1 Theoretical Results

Speck, Geißer, and Mattmüller (2020) show that good goal-distance estima-
tions in the form of heuristics are not the appropriate quantity to improve the
search performance of symbolic heuristic search. The reason for this is that, in
contrast to explicit A?, where every consistent heuristic can only reduce the
number of necessary node expansions (up to tie-breaking) and thus the search
effort compared to blind search, in BDDA? no such guarantee exists. In BDDA?,
the size of expanded BDDs, i.e., number of BDD nodes, representing expanded
states determines the search effort and thus the runtime. As a BDD BS′ can
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Figure 3.2: Visualization of two BDDs BS (with hblind) and BS′ (with h?)
representing state sets S and S′, where BS′ is exponentially larger in the
number of variables than BS , although S′ Ĺ S (Speck, Geißer, and Mattmüller
2020).

be exponentially larger than a BDD BS although the set of states S′ is a strict
subset of S, i.e., S′ Ĺ S, it is not always beneficial to represent and expand
fewer states (Figure 3.2). In other words, in explicit search, where the most
promising states (search fringe) are simply enumerated explicitly, reducing the
number of states to expand directly improves search performance. However, in
symbolic search, reducing the number of states to be expanded can lead to a
larger representation size in form of BDDs and a fragmentation of the search
fringe as the search progresses.

Similar to “must-expand” nodes in explicit search, Speck, Geißer, and
Mattmüller (2020) introduce the notion of expansion size for BDDA? as the cu-
mulative size of BDDs that must always be expanded by BDDA? before finding
an optimal solution to measure search effort. Using this notion it is possible to
prove that even under the best possible and unrealistic circumstances, namely
the perfect heuristic, the search effort of BDDA? can be exponentially larger
than the search effort of symbolic search without heuristic, and vice versa
(Theorem 2).

Theorem 2 (Speck, Geißer, and Mattmüller 2020). Using the perfect heuris-
tic h? instead of the blind heuristic hblind can decrease or increase the expansion
size of BDDA? exponentially in the size of the planning task for a given variable
ordering.
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While the result that the search performance of BDDA? can be exponentially
improved when h? is used instead of hblind is less surprising, the opposite result
is very surprising. This highlights the difference between explicit and symbolic
search: the representation of the search fringe must be concise, and in symbolic
search the decision diagram size is not directly related to the number of states
represented. To prove that using h? instead of hblind can exponentially increase
the expansion size and thus exponentially deteriorate search performance,
Speck, Geißer, and Mattmüller (2020) constructed a family of planning tasks
Πn parameterized over the number of (relevant) variables. Solving tasks of
this family of planning tasks Πn with BDDA? using the perfect heuristic prunes
states from the expanded set of states (search fringe) so that the representation
size increases exponentially. Figure 3.2 shows the core idea of the proof, with
two BDDs representing the search fringe, i.e., the expanded state set, in the
last expansion step of BDDA? using h? or hblind when solving Π3. The key
observation is that when hblind is used, no states are pruned according to their
values over variables vi, resulting in a compact BDD representation. However,
if h? is used, states are pruned according to their values over the variables vi
and the function (v1 ∧ vn+1) ∨ . . . ∨ (vn ∧ v2n) has to be represented, which
under certain variable orders requires a BDD with exponentially many nodes
(Kissmann 2012).

Finally, Speck, Geißer, and Mattmüller (2020) show that these theoretical
results also hold for several other symbolic A? variants such as Lazy BDDA?,
SetA?, ADDA?, and EVMDDA?, as well as for their bidirectional extensions.

3.2 Empirical Results

Speck, Geißer, and Mattmüller (2020) empirically investigated forward and
bidirectional BDDA? with precomputed fraction perfect heuristics on domains
from the optimal track from the International Planning Competitions between
1998 and 2018. A heuristic c ·h is called fraction perfect if it assigns to all states
the values of the perfect heuristic multiplied by a constant 0 ≤ c ≤ 1, where
0h? = hblind and 1h? = h? are important extreme cases. Note that BDDA? with
blind heuristic 0h? = hblind corresponds to symbolic blind search.

Figure 3.3a compares the search effort of BDDA? with the blind heuristic
and the search effort of BDDA? with the fraction perfect heuristics. While the
unrealistic case of the perfect heuristic almost always leads to a reduction
in search effort in practice, when we consider more realistic cases, namely
the fraction perfect heuristic, we can see that the search effort of BDDA? can
improve or deteriorate to the same extent.

Figure 3.3b shows the expansion time of BDDA?, i.e., the cumulative time
required to generate all successors with the image operation. A correlation
is observed between the search effort and the expansion time, which also
empirically shows that the introduced notion of search effort is an adequate
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Figure 3.3: Comparison of BDDA? with the blind heuristic and with given
(fraction) perfect heuristics (Speck, Geißer, and Mattmüller 2020). With uns.
we refer to instances that were not solved within the time and memory limits.
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quantity to measure the performance of BDDA?. This highlights the fundamen-
tal problem highlighted by Speck, Geißer, and Mattmüller (2020): using a
heuristic does not always improve the search performance of BDDA?.

Finally, Figure 3.3c shows the total running time of BDDA? without the
time for computing the corresponding heuristic. Comparing the expansion
time with the total running time, we find that BDDA? with fraction perfect
heuristics has a higher time increase than BDDA? with hblind, which is due to
the time-consuming partitioning of the state sets by heuristic values (Jensen,
Veloso, and Bryant 2008).

Overall, these empirical results show that also in practice a heuristic can
improve or deteriorate the search effort of BDDA? to the same extent. These
empirical results are consistent with the presented theoretical results. Fur-
thermore, Speck, Geißer, and Mattmüller (2020) show that it appears to be
domain dependent whether a heuristic helps BDDA? as the structure of the
reachable search space appears to play a central role.

3.3 Discussion

As the results of Speck, Geißer, and Mattmüller (2020) show, using goal-
distance estimators, i.e., heuristics, to prune states in symbolic heuristic search
does not always pay off. Indeed, even the perfect heuristic can exponentially
deteriorate the search performance of BDDA? and other symbolic A? variants.
Since the search performance of BDDA? is not directly related to the number of
expanded states, but to the size of the involved BDDs during the search, Speck,
Geißer, and Mattmüller (2020) suggest using heuristic functions that can
provide a nice structure of the involved decision diagrams or even give a size
guarantee. One possible candidate are potential heuristics (Pommerening et al.
2015), which have recently been shown to be encodable as operator potentials
within symbolic heuristic search, resulting in state-of-the-art performance
(Fišer, Torralba, and Hoffmann 2021).

The fact that symbolic blind search does not use heuristics and yet can
compete with explicit heuristic search in cost-optimal planning (Edelkamp,
Kissmann, and Torralba 2015; Speck, Geißer, and Mattmüller 2020; Torralba,
Alcázar, et al. 2017) has the advantage that it is not constrained by the
limits of heuristics. Considering expressive extensions of classical planning,
such as conditional effects, axioms, and many more, explicit heuristic search
planners rarely support them. The reason is that it is very challenging to
design admissible heuristics that are both informative and fast to compute
when considering such extensions. Symbolic blind search, however, provides
a good basis to support these extensions, since it does not rely on heuristics
and performs an efficient exhaustive search. In the next chapters, we will take
advantage of this and show how symbolic search can be adapted to support
expressive extensions in cost-optimal planning.





CHAPTER 4
Axioms and Derived Variables

The grand aim of all science [is] to cover the
greatest number of empirical facts by logical
deduction from the smallest possible number of
hypotheses or axioms.

— Albert Einstein (1950)

Core Publication of this Chapter

• David Speck, Florian Geißer, Robert Mattmüller, and Álvaro Torralba
(2019). “Symbolic Planning with Axioms”. In: Proceedings of the Twenty-
Ninth International Conference on Automated Planning and Scheduling
(ICAPS 2019). Ed. by Nir Lipovetzky, Eva Onaindia, and David E. Smith.
AAAI Press, pp. 464–472.

In classical planning, Boolean or finite domain variables are used to de-
scribe the states of the world, the preconditions and the effects of actions, and
the goal description (Bäckström and Nebel 1995; Fikes and Nilsson 1971). For
many real-world problems, however, complex action preconditions or goals are
desirable or even necessary for a compact problem description (Thiébaux, Hoff-
mann, and Nebel 2005). Axioms allow to model such complex preconditions
and goals compactly by introducing a set of derived variables whose values are
not directly influenced by the actions but are derived from the values of other
variables using a set of logical axioms.

Although axioms are an essential feature (Thiébaux, Hoffmann, and Nebel
2005) of PDDL (Hoffmann and Edelkamp 2005; McDermott et al. 1998), the
common language for modeling planning tasks, modern planning techniques
rarely support axioms, especially in cost-optimal planning. Most admissible
heuristics commonly used in A? search, one of the most prominent approaches
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Figure 4.1: Overview of extensions for classical planning, where the red color
denotes the planning formalism supported by the proposed symbolic search
approach.

to cost-optimal planning, are not defined for their use with axioms. The few
heuristics that support axioms are based on naive relaxations that consider
axioms as zero-cost actions, which may greatly reduce the informativeness of
the heuristics. One exception is the axiom-aware delete relaxation heuristic,
obtained by applying a model for state constraints to planning with axioms
(Haslum et al. 2018; Ivankovic and Haslum 2015). While these heuristics are
often informative, they are also time-consuming to compute and therefore
often do not pay off in terms of coverage or runtime.

In this chapter, we define and motivate planning with axioms and sum-
marize the known complexity and compilability results for this setting. Then
we describe three different sound and complete ways to extend symbolic
search algorithms to support axioms natively introduced by Speck, Geißer,
Mattmüller, and Torralba (2019) (Figure 4.1). The empirical study on different
planning domains shows that the symbolic axiom encodings of Speck, Geißer,
Mattmüller, and Torralba (2019) yield an optimal planner that supports axioms
and compares favorably with other state-of-the-art methods.
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4.1 Formalism

Planning with axioms extends the formalism of classical planning (Definitions 1
and 2) with a set of derived variables and axioms as follows (Helmert 2008;
Thiébaux, Hoffmann, and Nebel 2005).

Definition 8 (Planning with Axioms). A planning task with axioms is a tuple
Π = 〈Ξ, I,G,B〉 with Ξ = 〈V,O, C,D,A〉 that extends an ordinary planning
task and domain with a set of axioms A that is used to evaluate a set of
secondary or derived propositional variables D. Partial variable assignments
such as the preconditions preo of operators o ∈ O and the goal condition are
defined over primary and secondary variables V ∪ D. A variable assignment s
is called a state if it is defined for all variables in V , and an extended state if it is
defined for all variables in V ∪ D. With S we refer to the set of all states and
with SE to the set of all extended states. A is a finite set of axioms over V ∪ D.
An axiom has the form h← b where the head h is a variable in D and the body
b is a finite conjunction of positive or negative literals over V ∪ D.

The set of axioms is partitioning into a totally ordered set of axioms layers
A1 ≺ . . . ≺ Ai ≺ . . . ≺ Ak with i = 1, . . . , k. The layer of an axiom is defined
by the layer of its head, which is determined by a partition of the set of derived
variables into subsets D1 ≺ . . . ≺ Dk. We assume that this partition forms a
stratification, i.e., that for all i = 1, . . . , k, and for each di ∈ Di, it holds that
(1) if dj ∈ Dj appears in the body of an axiom with head di, then j ≤ i and (2)
if dj ∈ Dj appears negated in the body of an axiom with head di, then j < i.

The semantics of axioms is as follows: (1) to evaluate a derived variable,
only axioms in the current or previous layers have to be considered, and (2)
axioms have negation-as-fault semantics, i.e., if a fact cannot be derived as true,
it is assumed to be false in subsequent layers (Speck, Geißer, Mattmüller, and
Torralba 2019). Given a state s ∈ S (over V), the extended state A(s) ∈ SE
(over V ∪D) is uniquely defined by the standard stratified semantics (Apt, Blair,
and Walker 1988; Thiébaux, Hoffmann, and Nebel 2005). In other words,
axioms are evaluated in a layer-by-layer fashion using fixed point computations.
More precisely, given a state s ∈ S, first all derived variables d ∈ D are set
to their default value (false), i.e., ¬d. Second, a fixed point computation is
performed for each axiom layer in sequence to determine the final values of the
derived variables (Helmert 2008). The evaluated derived variables together
with the state s form the extended state A(s).

Intuitively, the axioms form a background theory that makes it possible
to capture/derive some properties of states, i.e., secondary variables, from
the primary state variables. Consequently, an operator can only change the
values of the primary variables (eff o is a partial variable assignment over V),
and based on the primary variables in the successor state, the values of the
secondary variables can be derived using the axioms. Moreover, an operator
is applicable in a state s ∈ S if preo ⊆ A(s) and a state s ∈ S is a goal state if
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G ⊆ A(s). For a detailed description and discussion of the semantics of axioms,
see Helmert (2006, 2008) and Thiébaux, Hoffmann, and Nebel (2005).

Example 4 illustrates the semantics and usefulness of axioms in the context
of classical planning.

Example 4. Consider the navigate operators of Example 1, which navigates the
rover from one cell to another with a cost of 0. This verbose modeling of the
rover navigation leads to a larger state space and longer plan than necessary.
Reachability can be expressed as a recursive property with axioms and derived
properties. To model a navigate operator with axioms that moves the rover
to a reachable location loc, we introduce a derived variable reachable(loc) as
a precondition for the navigate operator. The values for the derived variables
reachable(loc) are determined by a single layer of axioms A1.

• reachable(loc)← rover-at = loc

• reachable(to)← reachable(from) ∧ free(to) ∧ adjacent(from,to)

Intuitively, the first axiom means that the current location of the rover is
reachable. The second axiom means that a free location adjacent to a reachable
location is also reachable. By applying the axioms until a fixed point is reached,
the current state s is expanded to A(s), which then contains the information
about the actual reachable locations (reachable(loc)) based on the current state
s, which contains the rover location and all relevant information about the
map. This encoding provides a natural and concise modeling of the transitive
closure property of reachability. Moreover, it provides not only a smaller
state space, but also a shorter plan πr = 〈navigate-7-1, launch-7-1, fly-7-1-
to-6-1, take-img-6-1, fly-6-1-to-10-1, take-img-10-1, fly-10-1-to-7-1, land-7-1,
navigate-0-5〉, which avoids the irrelevant choice of the exact path the rover
must take.4

In Example 4, the reachable cells for the rover are always the same, but
this is not necessarily true in general. For example, it could be possible that
actions by the rover make some cells impassable. A similar scenario where
reachability can change from state to state is Sokoban, where the locations
of the boxes affect the reachability of the cells (Ivankovic and Haslum 2015;
Miura and Fukunaga 2017).

4.2 Complexity and Compilability

Helmert (2008) showed that planning with axioms (Definition 8) is PSPACE-
complete, since it generalizes classical planning (hardness) and a non-
deterministic Turing machine can solve the bounded plan existence problem
for planning with axioms with polynomial space (completeness).

4If the navigation operators of the rover would have non-zero costs, such a modeling would
require state-dependent action costs, which we discuss in more detail in Chapter 5.
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Figure 4.2: Visualization of symbolic forward search with theO-based encoding
of axioms (Speck, Geißer, Mattmüller, and Torralba 2019).

Theorem 3 (Helmert 2008). Bounded plan existence of planning with axioms
is PSPACE-complete.

Thiébaux, Hoffmann, and Nebel (2005) show that axioms are an essential
feature of the planning language PDDL (Hoffmann and Edelkamp 2005; Mc-
Dermott et al. 1998), proving that it is in general not possible to compile away
axioms without a super-polynomial growth of the plan length or description
size.5 Furthermore, Thiébaux, Hoffmann, and Nebel (2005) argue that axioms
are necessary to model real-world problems in a compact and elegant way,
as they allow to model complex action preconditions (e.g. transitive closure
property) or goals. From these two observations, we can conclude that it is
desirable and necessary to have search algorithms that can handle axioms
directly with native support to solve some real-world problems.

4.3 Symbolic Search

Speck, Geißer, Mattmüller, and Torralba (2019) introduce three different
variants to support and represent axioms in symbolic search. All three encod-
ings are sound and complete, allowing for optimal and complete symbolic
search. We briefly describe the idea of the three symbolic variants and present
an empirical evaluation comparing the symbolic approaches (Speck, Geißer,
Mattmüller, and Torralba 2019) with explicit heuristic search approaches for
planning with axioms (Ivankovic and Haslum 2015). For a more detailed
explanation of the symbolic encodings, we refer to Speck, Geißer, Mattmüller,
and Torralba (2019).

5Note that Thiébaux, Hoffmann, and Nebel (2005) also show that the 1-step planning
with axioms problem is EXPTIME-complete, which results from the fact that they consider
planning tasks described in PDDL, while we consider planning tasks and, in particular, axioms in
a grounded and normalized form.



28 CHAPTER 4. AXIOMS AND DERIVED VARIABLES

. . . χ
S

χ{A(s) | s∈S}

apply
operations

∧
d∈D(d↔ χ

Sd
)

Figure 4.3: Visualization of symbolic forward search with the V-based encoding
of axioms (Speck, Geißer, Mattmüller, and Torralba 2019).

O-Based Encoding. The most straightforward way to integrate axioms into
symbolic search is the so-called O-based encoding, where each axiom is in-
terpreted as an operator, where the body is a (conditional) precondition and
the head is the (conditional) effect. Unlike the original operators, the axiom
operators OA affect a derived variable rather than a primary variable. With this
encoding, it is possible to expand a set of states, i.e., to evaluate the derived
variables of each state in a set of states in a symbolic way with a fixed point
computation that represents the operators OA as a transition relation with
BDDs. Figure 4.2 illustrates this procedure. The general idea is to perform
this fixed point computation after each application of the actual operators to
expand all newly generated successor states.

The following two axiom encodings are based on the idea of precomputing a
symbolic representation over the primary variables V for each derived variable
d ∈ D if d is true (Definition 9). This overcomes the problem of the O-
based encoding, which requires an expensive fixed point computation to be
performed in each planning step. Speck, Geißer, Mattmüller, and Torralba
(2019) present an efficient algorithm for computing the primary representation
for each derived variable using BDDs.

Definition 9 (Primary Representation). Let d ∈ V ∪ D be a (primary or
derived) variable and A a set of axioms. The primary representation of d is the
set of states Sd, which contains all states over V where d is evaluated to true,
i.e., Sd = {s ∈ S | A(s) |= d}.

V-Based Encoding. Figure 4.3 illustrates the V-based encoding, where each
state of a given set of successor states S is expanded. Starting from the primary
representation (Definition 9), the derived variable d in a state s ∈ S is true
if s ∈ Sd. Therefore, χ{A(s) | s∈S} = χ

S ∧
∧
d∈D(d ↔ χ

Sd
) represent the

extended set of states.

Symbolic Translation. In contrast to the O-based and V-based encodings,
the symbolic translation encoding completely omits derived variables by per-
forming the search using a translation of the original planning task. The idea of
the translation is to replace all occurrences of derived variables in the planning
task with their corresponding primary representation. In particular, derived
variables in operator preconditions and the goal formula are replaced by their
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Figure 4.4: Visualization of symbolic forward, backward and bidirectional search
with the symbolic translation encoding of axioms (Speck, Geißer, Mattmüller,
and Torralba 2019).

corresponding primary representation (Figure 4.4). Thus, no reasoning about
derived variables during the actual search is required. Note that this symbolic
translation encoding is different from compilations that convert PDDL with ax-
ioms to PDDL without axioms (Gazen and Knoblock 1997; Thiébaux, Hoffmann,
and Nebel 2005), since at no point is an explicit version of the compiled task
(a new PDDL representation) created. While the primary representation, and
thus the symbolic translation, can lead to exponential size growth in the worst
case, in practice it is shown that the concise representation of BDDs alleviates
this problem (see Empirical Evaluation).

Speck, Geißer, Mattmüller, and Torralba (2019) define the O-based and
the V-based encoding for symbolic forward search only. It is an open question
how to perform backward search, since it is not clear how to efficiently reverse
intermediate inferences about the values of derived variables. In contrast, the
symbolic compilation encoding performs all inferences over the derived vari-
ables as a preprocessing step. Thus, it allows to perform backward search and
bidirectional search, which can significantly improve the planning performance.

Empirical Evaluation. Table 4.1 shows the coverage (number of optimally
solved instances) on different domains with axioms modeling verification
problems (Edelkamp 2003; Ghosh, Dasgupta, and Ramesh 2015), multi-agent
planning with belief sets (Kominis and Geffner 2015) or elevator control
(Koehler and Schuster 2000). Explicit A? search (Hart, Nilsson, and Raphael
1968) is evaluated with the hblind heuristic and the (naive) hmax heuristic
(Ivankovic and Haslum 2015), which are the best known heuristics that are
admissible and support axioms. We see that a BDD-based search is competitive
with the O-based and V-based approaches compared to the explicit A? search.
This is mainly due to the good performance in the Miconic Axioms domain,
which consists of many instances. However, symbolic search using the symbolic
translation encoding proves to be the best performing and overall dominant
approach, especially with bidirectional search.
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Algorithm
BDD Search

A? (explicit) O-based V-based Sym. Translation

Domain (#Tasks) hblind hmax fwd fwd fwd bwd bid

International Planning Competition (IPC)
Blocks Axioms (35) 18 18 15 15 21 18 30
Grid Axioms (5) 1 2 1 1 1 0 3
Miconic Axioms (150) 60 60 127 150 150 150 150
Optical Telegraphs (48) 2 2 2 2 4 0 4
PSR Middle (50) 35 35 32 39 50 50 50
PSR Large (50) 14 14 13 15 24 23 25
Philosophers (48) 5 5 9 9 12 4 12

Complex Preconditions at IPC
Assembly (30) 0 0 6 5 9 8 11
Airport Adl (50) 19 21 14 12 20 11 19
Trucks (30) 6 8 9 9 9 4 8

Ivankovic and Haslum (2015)
Blocker (7) 7 7 4 5 5 5 5
Social Planning (2) 2 2 2 2 2 2 2
Sokoban Axioms (25) 19 20 7 7 18 20 20

Ghosh, Dasgupta, and Ramesh (2015)
Acc cc2 (7) 7 7 7 7 7 7 7
Grid cc2 (13) 8 7 0 0 0 0 0

Kominis and Geffner (2015)
Collab And Comm (1) 1 1 0 0 0 0 0
Muddy Children (1) 1 1 1 1 1 0 1
Muddy Child (1) 1 1 1 1 1 1 1
Sum (1) 1 1 1 1 1 0 1
Word Rooms (2) 2 2 0 0 0 0 0

w/o Miconic (406) 149 154 134 131 185 153 199
Sum (556) 209 214 251 281 335 303 349

Table 4.1: Coverage (number of optimally solved instances) for explicit
and symbolic search algorithms on domains with axioms (Speck, Geißer,
Mattmüller, and Torralba 2019).
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The fashion of the world is to avoid cost, and you
encounter it.

— William Shakespeare (1598)
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In classical planning, it is common to assume constant action costs (Bäck-
ström and Nebel 1995; Fikes and Nilsson 1971). This often results in increased
effort for the modeler, because when a planning problem inherently involves
state-dependent action costs (sometimes called conditional costs), the modeler
of the problem must therefore distribute these costs over multiple copies of the
original action. In addition, the structure of the original cost function is hidden,
which, however, could provide useful information and more compact repre-
sentation possibilities for planning algorithms (Geißer 2018). If we consider,
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Figure 5.1: Overview of extensions for classical planning, where the red color
denotes the planning formalism supported by the proposed symbolic search
approach.

e.g., probabilistic planning in form of factorized Markov decision processes
(Puterman 1994), state-dependent action costs/rewards have been the stan-
dard for a long time (Geißer 2018; Geißer, Speck, and Keller 2020; Sanner
2010) and are supported by many different approaches (Cui and Khardon
2018; Geißer and Speck 2018; Keller and Eyerich 2012). Therefore, recently
there has been increased interest in classical planning with state-dependent
action costs (Corraya et al. 2019; Drexler, Seipp, and Speck 2021; Drexler,
Speck, and Mattmüller 2020; Geißer 2018; Haslum et al. 2018; Ivankovic,
Gordon, and Haslum 2019; Keller and Geißer 2015; Keller, Pommerening, et al.
2016; Mattmüller et al. 2018).

In this chapter, we define and motivate planning with state-dependent
action costs before summarizing the associated complexity and compilability
investigated by Speck, Borukhson, et al. (2021). Then, complete and optimal
symbolic search algorithms based on BDDs and EVMDDs are presented and
explained for planning with state-dependent action costs (Speck, Geißer, and
Mattmüller 2018a,b) (Figure 5.1). The empirical evaluation shows that the
native support of state-dependent action costs within symbolic search can
be beneficial overall compared to other explicit search approaches that are
partially based on compilations.
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5.1 Formalism

A planning domain and task with state-dependent action costs (sdac) is defined
as follows (Geißer 2018; Geißer, Keller, and Mattmüller 2015).

Definition 10 (Planning with Sdac). An sdac planning task 〈Ξ, I,G,B〉 with
Ξ = 〈V,O, (Co)o∈O〉 is identical to a classical planning task (Definition 2),
except for having (local) state-dependent action cost functions Co : S→ N0 for
each operator o ∈ O. The set of all operators O induces a state-dependent
action cost function or cost function C : S×O → N0 such that C(s, o) = Co(s) for
all s ∈ S. A plan π = 〈o0, . . . , on−1〉 for an sdac planning task that generates
a sequence of states s0, . . . , sn generalizes a classical plan (Definition 3) by
considering for the cost computation the state in which each operator is applied,
i.e., cost(π) =

∑n−1
i=0 Coi(si).

In general, such a state-dependent cost function can have an arbitrary
form and even be uncomputable (Geißer 2018). In practice, however, it is
useful to restrict the form and expressiveness of the cost function. Similar to
Geißer (2018), the focus of this work is mainly on cost functions that can be
evaluated in polynomial time and are in concise form (Definition 11). However,
in the theoretical complexity and compilability analysis, a comprehensive
classification of compilability and non-compilability for planning with sdac is
provided that also considers more complex classes of cost functions (Speck,
Borukhson, et al. 2021).

Definition 11 (Operator Cost Function). We define a language L by the
following Backus normal form:

t ::= c v t+ t t− t t · t |t|,

where c ∈ Z, v ∈ V. The semantic of L is defined over states s ∈ S as follows:

Cc(s) = c

Cv(s) = s(v)

Ct◦t
′
(s) = Ct(s) ◦ Ct′(s) for ◦ ∈ {+,−, ·}

C|t|(s) = |Ct(s)|

For a given term t ∈ L, the interpretation Ct specifies the operator cost
function, where we restrict the allowed operator cost function to a positive
range, i.e., Ct : S→ N0. In the following, we often identify a cost function Ct

with the term t that defines it.

We emphasize that planning with sdac is a generalization of classical
planning. Classical planning is an important special case in which we have
a constant action cost, i.e., operator costs that are independent of the state
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in which the operator is applied. Modeling operator costs as state-dependent
allows for a more natural and concise representation of planning problems as
Example 5 illustrates.

Example 5. Consider the drone flight operators of Example 1. In classical
planning (Definition 2), we need one fly operator for each pair of cells from =
(x, y) and to = (x′, y′) to model the Manhattan distance as constant costs. Note
that such modeling is often used to represent motion operators with costs in
the International Planning Competition (e.g., TRANSPORT domain). With sdac,
we are able to model such operators in a natural and concise way by specifying
the Manhattan distance directly as the cost function of the fly operator. For
each cell to = (x′, y′), we specify an operator fly-to-x′-y′ that is applicable
when the drone is launched and has the effect of the drone being at (x′, y′).
The cost of the operator fly-to-x′-y′ is |xdrone − x′drone|+|ydrone − y′drone|.

5.2 Complexity and Compilability

The work of Speck, Borukhson, et al. (2021) addresses the computational
complexity and compilability of planning with sdac. They show that planning
with sdac has the same complexity as ordinary planning, i.e., is PSPACE-
complete. It is natural that a cost function should not be computationally
more difficult than planning itself, i.e, more difficult than PSPACE. Otherwise,
the evaluation of the cost function would dominate the computation instead
of solving the actual planning task, which should be the actual challenge.
By restricting the complexity of cost functions to FPSPACE, we capture cost
functions that can be evaluated in polynomial time (Definition 11), up to more
complex cost functions such as the cost of a robot motion operation (LaValle
2006; Reif 1979).

Theorem 4 (Speck, Borukhson, et al. 2021). Bounded plan existence of plan-
ning with sdac is PSPACE-complete, if the cost function is in FPSPACE.

Recall that the same computational complexity of two planning formalisms
does not imply the same expressive power (Nebel 2000). While existing
translations (EVMDD-based and combinatorial (Geißer 2018; Geißer, Keller,
and Mattmüller 2015)) of sdac planning tasks into classical (constant cost)
planning tasks work well in practice, both can lead to an exponential increase
in task size, which means that strictly speaking they are not compilations
by Definition 4. Speck, Borukhson, et al. (2021), however, analyzed the
compilability of sdac and obtained results of possibility and impossibility that
depend on the desired plan length and the complexity of the cost function. For
this purpose, it is assumed that the cost function is provided in a concise form
of a deterministic Turing machine (DTM). It should be noted that, in general,
other concise forms of cost functions, such as computer programs or the format
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Table 5.1: Existence results for compilation schemes preserving task sizes
polynomially depending on the computational complexity of the cost functions
(rows) and the desired plan length preservation (columns) (Speck, Borukhson,
et al. 2021).

defined in Definition 11, can be simply converted to this form by specifying a
DTM that computes/simulates the corresponding cost function. Table 5.1 gives
an overview of the compilation results, which we discuss below.

Possibility Results. It can be shown that there exists a compilation scheme
that preserves the plan length polynomially when the cost function is in FP.
Moreover, there is a valid compilation scheme (unbounded plan length) if the
cost function is in FPSPACE. The underlying idea of the compilation scheme
that yields these two results is to simulate a DTM that computes the cost
function Co(s) of the operator o ∈ O for a current state s ∈ S within the
planning task. For this purpose, each operator is compiled into an operator
sequence that ensures that the task size and plan length are bounded by the
space and time complexity of the corresponding DTM used to compute the cost
function (Speck, Borukhson, et al. 2021). Note that this compilation makes it
possible to encode various different cost functions that can be computed with a
DTM, although the usefulness of the resulting planning task obviously depends
heavily on the complexity of the DTM.

Impossibility Results. Finally, Speck, Borukhson, et al. (2021) proved that it
is impossible to compile away, i.e., to find a compilation scheme that preserves
plan length linearly when the cost function is in FP. Moreover, it is impossible
to preserve the plan length polynomially when the cost function is in FPSPACE,
unless the polynomial hierarchy collapses to the third level.

Considering these results on complexity and compilability, one can see that
it may be helpful not to compile sdac at all, but to keep it in the model and
support it natively in algorithms, which avoids the overhead introduced by
compilation (Speck, Borukhson, et al. 2021). In particular, the fact that cost
functions in FP, such as the fragment considered in practice (Definition 11),
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require polynomial blowup in terms of domain description size and original
plan length may make the use of the compilation technique infeasible. In the
following, we show how it is possible to natively support and represent sdac
with decision diagrams to perform a symbolic search.

5.3 Symbolic Search

Speck, Geißer, and Mattmüller (2018a) introduce a complete and optimal
approach that performs symbolic search with EVMDDs. In contrast to symbolic
search with BDDs, where costs are represented by partitioning sets of states
into subsets with identical cost values (see Example 2), with EVMDDs it is
possible to represent a set of reachable states together with reachability costs
simultaneously. The latter is possible by assigning to reachable states S ⊆ S

the corresponding cost g ∈ N0 and to unreachable states the cost ∞. Speck,
Geißer, and Mattmüller (2018a) introduced all the necessary operations such
as the image and preimage operations for EVMDDs to enable symbolic search.
The main advantages of using EVBDDs/EVMDDs over ADDs and BDDs are
that they can represent certain functions exponentially more compactly and
that encoding reachability and cost in the open list, closed list, and transition
relations simultaneously can also result in a more concise representation
(Speck, Geißer, and Mattmüller 2018a).

In addition to the EVMDD-based symbolic search for sdac planning tasks, we
propose and study in this thesis a novel variant based on BDDs. The underlying
idea is to first create an ADD (instead of an EVMDD) that represents each
operator as a transition relation that includes costs, before partitioning the ADD
into multiple BDDs. In other words, we create multiple transition relations
for each operator with sdac, one for each possible cost value, encoding as a
precondition the corresponding condition for the cost. This approach may
result in multiple transition relations with different costs, but allows us to
perform the classical symbolic search with cost bucketing, using the full power
of sophisticated BDD operations and libraries.

Note that the representation of the cost function as decision diagram
can lead to an exponential increase in the worst case. However, as usual
with decision diagrams, it is assumed that the representation size of the cost
functions is manageable.

Example 6. Consider an operator o = 〈¬x, x〉 with sdac Co(s) = 5y + 1 for
s ∈ S. Figure 5.2 visualizes the transition relation of o represented with
different decision diagrams, where the precondition (predecessor states) are
encoded with unprimed variables and the effects (successor states) with primed
variables. Figure 5.2a represents the EVMDD representing the transition
relation of o, while encoding the cost Co(s) for each state s ∈ S at the same
time. To represent the operator o with BDDs, multiple BDDs are necessary to
decompose the cost function. Figure 5.2b illustrates two BDDs representing the
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Figure 5.2: Visualization of different variants for a symbolic representation of
an operator o = 〈¬x, x〉 with state-dependent action costs Co(s) = 5y + 1.

two possible cost values of Co(s), specifically 1 and 6. The left BDD encodes
the cost of 1 by encoding ¬y in the precondition. Note that by adding the new
precondition ¬y, ¬y also holds in all successor states, i.e., ¬y′, since variable
y does not occur in the effect (closed world assumption). Similarly, the right
BDD encodes y as a precondition to obtain a cost of 6.

Empirical Evaluation. While Speck, Geißer, and Mattmüller (2018a) re-
ported results comparing symbolic search with EVMDDs and translation-based
approaches, here we present new empirical results incorporating recent ad-
vances, planners, and benchmarks for planning with sdac (Corraya et al. 2019;
Geißer 2018; Speck, Borukhson, et al. 2021).

Table 5.2 shows the coverage (number of optimally solved instances) of
explicit A? search (Hart, Nilsson, and Raphael 1968) with various translation-
based heuristics (Geißer 2018) and forward, backward and bidirectional sym-
bolic search with all data structures represented as either EVMDDs (Speck,
Geißer, and Mattmüller 2018a) or BDDs. In explicit A? search for planning
with sdac, the cost function is represented as an EVMDD, which is used to
evaluate the actual costs (g-values) (Geißer 2018). We consider the hblind
heuristic and the hmax heuristic (Bonet and Geffner 1999), which is analyzed
in two versions: hc

max uses the combinatorial translation (Geißer 2018) and
hdd

max uses the EVMDD translation (Geißer, Keller, and Mattmüller 2015) to
compute the heuristic values.
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Algorithm A? (explicit) EVMDD Search BDD Search

Domain (# Tasks) hblind hc
max hdd

max fwd bwd bid fwd bwd bid

Asterix (30) 10 5 10 30 29 30 30 28 30
Pegsol (100) 96 0 96 86 16 88 96 23 96
Gripper (30) 8 4 8 11 8 12 20 14 19
PSR Large (100) 33 12 39 36 20 36 28 23 28
PSR Middle (100) 79 34 84 88 55 90 74 58 74
Openstacks (70) 9 10 10 40 30 38 54 46 51
Transport (30) 24 19 24 24 23 29 24 23 28
TSP (26) 21 12 21 15 10 13 18 10 18

Sum (486) 280 96 292 330 191 336 344 225 344

Table 5.2: Coverage (number of optimally solved instances) for explicit
and symbolic search algorithms on versions of planning domains with state-
dependent action costs.

Overall, it can be seen that native support for sdac within symbolic search
compares favorably with explicit search approaches. Comparing symbolic
search with BDDs and EVMDDs, there are domain-wise differences in cov-
erage, with BDD-based symbolic search performing best overall. However,
the structural advantages of EVMDDs pay off especially in the PSR domain,
where the cost function is complex and contains derived variables represented
with the symbolic translation described in Chapter 4.6 Looking at the explicit
approaches, we can see that in many domains it is not possible to perform
a combinatorial translation hc

max, which often requires exponentially many
operators and thus solves the least number of tasks. Explicit A? search with
the hblind and the hdd

max heuristics performs much better. These configurations
use EVMDDs to concisely represent the cost functions and as a basis for the
heuristic computation, which seems to pay off. It turns out that the heuristic
estimates of hdd

max can help the search, but the performance of hdd
max is still

often not comparable to symbolic blind search. However, there are domains
where explicit heuristic search performs better than symbolic search. This
shows that, similar to classical planning, a potential portfolio planner of these
complementary search strategies could lead to a state-of-the-art planner that
combines both strengths (Sievers et al. 2019).

6In Section 8.1, the relationship and interplay of the different planning extensions is
discussed in more detail.



CHAPTER 6
Oversubscription Planning

A goal is not always meant to be reached, it often
serves simply as something to aim at.

— Bruce Lee

Core Publication of this Chapter

• David Speck and Michael Katz (2021). “Symbolic Search for Oversub-
scription Planning”. In: Proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI 2021). Ed. by Kevin Leyton-Brown and
Mausam. AAAI Press, pp. 11972–11980.

In conventional classical planning, goal states are defined by a goal con-
dition, which is treated as a hard constraint that must be fully satisfied by
any solution/plan. In many real-world applications, however, the description
of goals is oversubscribed, i.e., there are a large number of desirable, often
competing goals of varying value, and a system (e.g., a Mars rover) may not be
able to achieve all of them with the available resources (e.g., battery power).
In such scenarios, it is natural to assign different utility values to states and
to search for feasible and achievable states that maximize the overall utility
value. This planning formalism is called partial satisfaction planning. Here,
we distinguish between net-benefit planning (van den Briel et al. 2004), where
operator costs and state utility values, i.e., solution costs and solution utilities,
are comparable, and oversubscription planning (Smith 2004), where those are
not comparable.

Symbolic search in the context of partial satisfaction planning has been
studied to a limited extent. For net-benefit planning, symbolic branch-and-
bound search was introduced (Edelkamp and Kissmann 2009; Kissmann 2012),
which considers so-called soft-goal planning tasks, i.e., planning tasks in which
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Figure 6.1: Overview of extensions for classical planning, where the red color
denotes the planning formalism supported by the proposed symbolic search
approach.

the utility function is a weighted sum over a subset of the state variables. Since
Keyder and Geffner (2009) provided a simple and concise compilation from
net-benefit planning (soft-goal planning tasks) to classical planning, which
is most commonly used in practice, we will focus on oversubscription plan-
ning, which is considered more challenging (Domshlak and Mirkis 2015). For
oversubscription planning, there are a variety of explicit (heuristic) search
approaches, mainly based on adapting existing heuristics from classical plan-
ning to oversubscription planning (Domshlak and Mirkis 2015; García Olaya,
Rosa, and Borrajo 2021; Katz, Keyder, Pommerening, et al. 2019a; Mirkis and
Domshlak 2013; Muller and Karpas 2018). An important example of symbolic
search in the context of oversubscription planning is the work of Eifler et al.
(2020), in which plan explanations were investigated considering plan utilities.
The work of Speck and Katz (2021) is the first to explicitly define and study in
detail symbolic search for solving oversubscription planning problems.

In this chapter, we define and motivate oversubscription planning that
allows to extend the goal specification (Figure 6.1), and discuss and summarize
complexity and compilability results for this setting. Then, an optimal and
complete symbolic search approach for oversubscription planning introduced
by Speck and Katz (2021) is presented. The empirical analysis shows that
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the presented symbolic approach competes favorably with explicit heuristic
state-space search.

6.1 Formalism

We consider oversubscription planning tasks (Katz, Keyder, Pommerening, et al.
2019a; Smith 2004), where the solution cost and utility are not comparable.

Definition 12 (Oversubscription Planning). An oversubscription planning
(osp) task is a tuple Π = 〈Ξ, I,G,B〉 with Ξ = 〈V,O, C,U〉 that extends an
ordinary planning task and domain by a state utility function U : S→ N0 that
assigns utility to states.

Similar to planning with sdac, where we focused mainly on cost functions
that can be evaluated in polynomial time, here we focus mainly on utility
functions that can be evaluated in polynomial time. We assume that the utility
function U has the same form as an operator cost function (Definition 11).

Since we consider utility in osp, it is natural to search for a plan that
maximizes utility, i.e., leads to a state with high utility within the cost bound B.
For this purpose, we define an osp plan as follows and introduce the concept
of utility-optimal plans.

Definition 13 (Osp Plan). An (osp) plan π is defined as an ordinary classical
plan (Definition 3), i.e., an applicable sequence of operators that leads from an
initial state I to a goal state s? ∈ S?, where the plan cost (cumulative operator
cost) is within the cost limit cost(π) ≤ B.

The utility U(π) of the plan π is defined by the utility of the final state s?
induced by π, i.e., U(π) = U(s?).

Such a plan π is called utility-optimal, or simply optimal (if it is clear from
the context), if there is no other plan π′ for which U(π′) > U(π). A plan π is
cheapest utility-optimal if it is a cheapest among utility-optimal plans, i.e., there
is no utility-optimal plan π′ for which cost(π′) < cost(π).

The underlying idea of osp is to model many different possible competing
goals with different associated utilities. The overall goal is to achieve as much
as possible given a cost B that models a limited resource together with operator
costs. Therefore, in practice, the “hard” goals G are often underspecified or
even nonexistent, as the goals can be modeled with utility (Katz, Keyder,
Pommerening, et al. 2019a,b). Since all the approaches and results presented
in this chapter can straightforwardly support hard goals G, we consider them
for completeness. As a result of this modeling, there are often many valid
plans that vary strongly in their utility. Thus, the main goal and challenge of
oversubscription planning is to identify a plan with high utility. The search for
an utility-optimal plan, i.e., a plan with the highest utility, is called optimal
oversubscription planning and is the main topic of this chapter. Originally, osp
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was introduced to address NASA missions such as planning science experiments
for a Mars rover (Smith 2004), where there are often limited resources and
several different and competing goals.

Example 7. Recall Example 1, where we specified the goal as taking images
at (6,1) and (10,1) and traveling equipped with the drone to “Three Forks” at
(0,5). It is reasonable to assume that the trip to (0,5) with the drone is the
(hard) goal G, since the journey of the rover is expected to continue from there.
Let us also assume that the drone has a limited battery capacity, as in reality.
With the operator cost C we describe the battery consumption of the drone for
the respective actions, and the final plan is constrained by the battery capacity
of say 20, which is represented as the cost limit B = 20. Recall that in our
model, only the operators associated with the drone have non-zero costs.

With osp, we can now express that we are more interested in the location
(10,1) by assigning a utility of 10 to the states in which an image was taken at
(6,1) and a utility of 15 to the states in which an image was taken at (10,1). If
we consider the original plan πr with a cost of cost(πr) = 24 by taking images
at (6,1) and (10,1), with a utility of 10 + 15 = 25, we see that it is not feasible
because it is too expensive at a cost of cost(πr) = 24 6≤ 20 = B.

Due to the cost bound, in a utility-optimal osp plan, only the objective of tak-
ing an image at (10,1) can be satisfied, ignoring location (6,1). The final utility-
optimal osp plan is as follows πr = 〈navigate-7-2, navigate-7-1, launch-7-1,
fly-7-1-to-10-1, take-img-10-1, fly-10-1-to-7-1, land-7-1, navigate-7-2, . . . ,
navigate-0-5〉 with a cost of cost(πr) = 18 and a utility of U(πr) = 15. If
the cost limit were even lower, the plan would change to taking an image at
(6,1) or even not taking any images at all.

6.2 Complexity and Compilability

In net-benefit planning, extensive complexity analyses have been proposed,
showing, among other things, that it is PSPACE-complete (Aghighi and Bäck-
ström 2015; Aghighi and Jonsson 2014). Moreover, for net-benefit planning,
where it is common to define the state utility function as a weighted sum over
a subset of the state variables, it was shown that these have no expressive
power and can be easily compiled away (Keyder and Geffner 2009).

However, in osp, where solution cost and solution utility are not comparable,
there is little work on complexity and compilability (Katz and Mirkis 2016).
Katz and Mirkis (2016) state that optimal oversubscription planning is PSPACE-
complete. There is no explicit proof of this statement in the literature, so we
provide such a proof in this thesis. For this purpose, we define the bounded
utility plan existence problem as follows.
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Definition 14 (Bounded Utility Plan Existence). The bounded utility plan
existence problem is the decision problem of determining whether there exists
a plan with utility greater than or equal to u ∈ N0 for a given osp task Π.

Similar to planning with state-dependent action costs (Definition 10), we
assume a utility function that is computationally no more difficult than planning
itself, i.e., lies in FPSPACE.

Theorem 5. Bounded utility plan existence is PSPACE-complete, if the utility
function is in FPSPACE.

Proof. PSPACE-hardness results from reducing the well-known bounded plan
existence (with unit cost) problem (Theorem 4; Bylander 1994) to our problem,
where the plan length is equal to the plan cost. PSPACE membership can be
proved by defining a nondeterministic Turing machine (NTM) that starts with
the initial state and guesses an operator to apply at each step. In addition, the
NTM evaluates the utility of the current state s in each step. The NTM ends
with “Yes” if s ∈ S? and U(s) ≥ u and with “No” if the selected operator is not
applicable or the cost bound is exceeded. Since at any point in time only the
current state, the summed costs, and the computation of the utility function (in
FPSPACE) need to be maintained, this NTM is in NPSPACE, which is known
to be equivalent to PSPACE (Savitch 1970).

Note that this proof holds even if the osp formalism does not contain a goal
specification G, as is often the case in the literature. The PSPACE-hardness
remains because we can simulate G by assigning non-zero utility only to the
goal states S?, while requiring a plan with utility greater than 0, i.e., u > 0.

Similar to all other extensions, we can observe that the computational
complexity is the same for classical and oversubscription planning. The compil-
ability of osp to classical planning is an open research question. Whether and
to what extent osp is more expressive than classical planning is not known yet.
However, there are some results and arguments in the literature that suggest
that osp is (significantly) more expressive than classical planning.

Katz and Mirkis (2016) investigated the computational complexity of osp
given common classes of utility functions. They showed that the complexity of
several of these fragments is computationally more difficult for osp than for
net-benefit planning, where operator costs and state utilities are comparable,
indicating that osp is computationally more challenging. Domshlak and Mirkis
(2015) argue that unlike classical planning or net-benefit planning, osp does
not seem to be reducible to a shortest path problem with a single source and
destination. For this reason, solving osp tasks requires (1) exhaustive search
algorithms and (2) sophisticated heuristics used in classical planning cannot be
applied directly. Based on these observations, Speck and Katz (2021) proposed
to use symbolic search for osp because symbolic search is known to be an
efficient search strategy that (1) can exhaustively explore the state space and
(2) does not rely on heuristics, i.e., performs a blind search.



44 CHAPTER 6. OVERSUBSCRIPTION PLANNING

I = ¬x ∧ ¬y
U(I) = 0

s1 = ¬x ∧ y
U(s1) = 0

s2 = x ∧ ¬y
U(s2) = 2

s3 = x ∧ y
U(s2) = 3

g = 0 g = 1 g = 2

B = 1

o1

o2 o3

Figure 6.2: Visualization of the transition system induced by the oversubscrip-
tion planning tasks Π in Example 8 (Speck and Katz 2021).

6.3 Symbolic Search

Speck and Katz (2021) define symbolic forward search for osp in a straightfor-
ward way and showed that their approach is complete and optimal. In fact,
the presented symbolic search approach finds not only a utility-optimal plan
but also a cheapest utility-optimal plan.

The underlying idea is to perform an exhaustive symbolic forward search,
just as in classical planning, until the cost bound B is exceeded. The utility
function U is a numerical function that can be represented with one ADD or
several BDDs, as explained in Example 2. In each expansion step, the utility of
the expanded states is symbolically evaluated and the states with the highest
utility so far are maintained. In addition, representing the utility as ADDs (or
BDDs) has the advantage that the highest possible value of the utility function
is known directly, since it is simply the terminal node with the highest value.
Finally, we stop when either all reachable states have been expanded within
the cost bound or a state with the overall maximum utility has been found,
since there can be no better plan. Example 8 illustrates how the symbolic
approach of Speck and Katz (2021) works.

Example 8 (Speck and Katz 2021). Consider a unit-cost oversubscription
planning task Π = 〈V,O, C,U , I,G,B〉 with an empty goal G = {} such that
all states are goal states, i.e., S = S?. Moreover, Π has two binary variables
V = {x, y}, where Dx = Dy = {0, 1}, an initial state I(x) = I(y) = 0, a
utility function U = 2x + xy, and a cost bound B = 1. There exist three
operators O = {o1, o2, o3}, where o1 = 〈¬x ∧ ¬y, y〉, o2 = 〈¬x ∧ ¬y, x〉 and
o3 = 〈x ∧ ¬y, y〉. The induced transition system of Π is depicted in Figure 6.2.

Symbolic forward search for osp (Speck and Katz 2021) starts with a BDD
representing the set of states open = {I} = ¬x ∧ ¬y consisting of a single
state, namely the initial state. Figure 2.2a visualizes the ADD and Figures 2.2c
to 2.2e visualize the BDDs representing the utility function U with a maximum
utility of 3. In the first step, we expand {I}, which also forms the set of best
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Algorithm BDD Search A?uADD A?mc BnB

Benchmark (# Tasks) uBDD uADD hblind hblind hb
max hb

m&s hblind hmc
lmcut

25% Bound (1667) 1271 1274 1165 1197 1190 1074 1183 1151
50% Bound (1667) 990 993 860 901 902 828 893 867
75% Bound (1667) 866 862 718 758 738 734 735 702

100% Bound (1667) 802 793 629 668 655 676 643 618

Sum (6668) 3929 3922 3372 3524 3485 3312 3454 3338

Table 6.1: Coverage (number of optimally solved instances) for explicit and
symbolic search algorithms on oversubscription planning domains (Speck and
Katz 2021).

states seen so far with utility U(I) = 0. The expansion leads to two new states
open = {s1, s2} = (¬x∧ y)∨ (x∧¬y), both of which can be achieved with cost
g = 1. Since s2 has utility U(s2) = 2, the set of best states changes to {s2}.
Finally, the plan 〈o2〉 leading to one of the best states (here s2) is reconstructed
as the cost limit of B = 1 is exceeded. Recall that all these computations are
performed with decision diagrams.

Finally, Speck and Katz (2021) argue that it is not straightforward to effi-
ciently apply regression to osp, which would enable symbolic backward search
and, in particular, symbolic bidirectional search. Unlike classical planning,
where the starting point of symbolic backward search is obvious, namely the
goal states represented as a compact goal formula, the starting point of sym-
bolic backward search for osp is not obvious. The reason is that the objective
is to find a final state with maximum utility, and it is not clear how this can
be represented in backward search. It might be possible to partition all goal
states by their utility values and represent them as separate BDDs. However,
since the goal formula in osp tasks is often unspecified or even empty, this may
require a regression of the entire state space with multiple backward searches.
All in all, it is not clear how to efficiently apply symbolic regression to osp,
which is an open research question.

Empirical Evaluation. Table 6.1 shows the coverage on four different osp
benchmark sets (Speck and Katz 2021). Each benchmark set consists of 57
domains and originates from the optimal track of the IPC 1998-2014, where
the goal facts are no longer hard goal facts, but have assigned utilities (Katz,
Keyder, Pommerening, et al. 2019a,b). The sets differ in the cost bounds, which
for each planning instance are set at 25%, 50%, 75%, or 100% of the cost
of the optimal or best known solution. The two symbolic search approaches
(BDD search) perform a forward search using BDDs, but differ in how the
utility of a set of states is evaluated, either with multiple BDDs (uBDD) or
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Figure 6.3: Coverage (number of optimally solved instances) over time for ex-
plicit and symbolic search algorithms on all oversubscription planning domains
(25%, 50%, 75%, or 100% Bound) (Speck and Katz 2021).

one ADD (uADD). As a result, symbolic search with a decomposed utility
function in multiple BDDs (BDD search + uBDD) works best overall. The main
advantage of representing utility values with BDDs compared to ADDs is that
the underlying decision diagram library CUDD (Somenzi 2015) uses techniques
such as complement edges to store BDDs more compactly (Brace, Rudell, and
Bryant 1990).

Overall, the described symbolic search approach (Speck and Katz 2021)
performs better than explicit search approaches. Comparing symbolic search
with its explicit counterpart, A?uADD search with the blind heuristic hblind, we
see a difference in performance due to the concise representation of state
sets. Considering other publicly available planning algorithms for osp, we
find that branch-and-bound search BnB (Katz, Keyder, Pommerening, et al.
2019a) and A?mc search with multiple cost functions (mc) (Katz and Keyder
2019) perform worse than symbolic search in terms of overall coverage. The
performance difference between symbolic search and explicit heuristic search
increases as the bound increases and thus the plan length increases. The
natural explanation for this is that heuristics do not pay off, since in osp it
seems rather difficult to define a heuristic that is both informative and fast
to compute. This observation is underlined by Figure 6.3, which depicts the
number of instances solved over time, where symbolic search dominates all
other approaches after a short time. Finally, as usual, there are domains where
explicit heuristic search performs better than symbolic search.
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Top-k Planning

If plan A fails, remember there are 25 more
letters.

— Chris Guillebeau

Core Publication of this Chapter

• David Speck, Robert Mattmüller, and Bernhard Nebel (2020). “Symbolic
Top-k Planning”. In: Proceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI 2020). Ed. by Vincent Conitzer and Fei Sha.
AAAI Press, pp. 9967–9974.

In planning, it is common to assume that the model is fully specified and
that the objective is to find a single plan. While in some cases a single plan
may be sufficient, in practice it is often better to have many good alternative
plans (Nguyen et al. 2012). The possibility of obtaining multiple high-quality
plans can be of great importance in various fields and applications, such as task
and motion planning (LaValle 2006; Lozano-Pérez and Kaelbling 2014; Ren,
Chalvatzaki, and Peters 2021), diverse planning (Katz, Sohrabi, and Udrea
2020), scenario planning (Sohrabi, Riabov, Katz, et al. 2018), goal recognition
(Sohrabi, Riabov, and Udrea 2016) or planning with user preferences (Nguyen
et al. 2012; Seimetz, Eifler, and Hoffmann 2021).

The problem of determining k shortest paths for a given graph is a well-
studied topic, going back to 1957 (Bock, Kanter, and Haynes 1957). However,
the problem of determining k cheapest plans, known as top-k planning, has
only been studied more recently (Riabov, Sohrabi, and Udrea 2014). In
addition to generating a set of possible solutions for all the above mentioned
applications, the systematic enumeration of plans in an anytime behavior
enables the realization of a “generate-and-test framework” by searching for
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Figure 7.1: Overview of extensions for classical planning, where the red color
denotes the planning formalism supported by the proposed symbolic search
approach.

plans that must satisfy certain complex requirements. Thus, top-k planning
can also be used to search in a simplified version of a given problem, e.g., in an
overapproximated, abstracted, or decomposed model representation (Höller
2021).

In this chapter, we define and motivate top-k planning (Figure 7.1) before
presenting the work of Speck, Mattmüller, and Nebel (2020) on this topic.
On the theoretical side, we discuss the question of whether top-k planning
is computationally more difficult than ordinary planning. On the practical
side, we describe a sound and complete symbolic search approach to top-k
planning. The empirical evaluation shows that symbolic search performs better
than other state-of-the-art search methods for both a small and a large number
of desired plans k.

7.1 Formalism

The objective of top-k planning is to determine a set of k different plans with
lowest cost for a given classical planning task (Definition 2). We formally
define top-k planning as follows (Katz, Sohrabi, Udrea, and Winterer 2018;
Riabov, Sohrabi, and Udrea 2014; Speck, Mattmüller, and Nebel 2020).
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Definition 15 (Top-k Planning). Given a planning task Π and a natural num-
ber k ∈ N ∪ {∞}, top-k planning is the problem of determining a set of plans
P ⊆ PΠ such that:

1. there exists no plan π′ ∈ PΠ with π′ 6∈ P that is cheaper than some plan
π ∈ P , and

2. |P |= k if |PΠ|≥ k, and |P |= |PΠ|, otherwise.

We emphasize that top-k planning is a generalization of classical planning,
where k = 1 corresponds to cost-optimal classical planning.

There can be infinitely many plans, since according to Definition 15 plans
with cycles, i.e., plans which visit the same state multiple times, are allowed.
Moreover, there can be infinitely many plans with optimal costs if cycles with
0 costs exist. In general, top-k planners not only provide a way to generate
the k best plans, but also to enumerate all possible plans if no 0-actions or,
more precisely, no 0-cost cycles exist. Depending on the application, plans with
cycles can be important to provide all possibilities, e.g., when user preferences
are not fully known or the model specification is not complete. In addition,
the sequential generation of all plans allows the realization of complete search
strategies that search in a simplified version of a problem at hand (Höller 2021).
The symbolic approach presented in this chapter can be modified to generate
only simple plans, i.e., plans without cycles (von Tschammer, Mattmüller, and
Speck 2022). However, we will focus on “ordinary” top-k planning, which
includes all possible plans. Example 9 illustrates the idea of top-k planning
when user preferences are not fully known and the model is incomplete.

Example 9. Consider Example 1, in which we identified an optimal plan where
the rover first navigates to (7,1) before the drone flies and takes an image at
(6,1) and then at (10,1). Finally, the rover equipped with the drone navigates
to (0,5). A closer look reveals that the order in which the drone takes the
images at the two desired locations is irrelevant to the overall cost of the plan.
With top-k planning we can determine both plans, one where the drone flies
first to (6,1) and then to (10,1) and vice versa. Based on these alternatives,
it can be decided at which of the two locations the images should be taken
first, depending on what the user prefers. In addition, there are various plans
with different navigation routes of the rover, which allow to choose a different
path during the execution of the plan without replanning and thus to react to
unforeseen events that were not considered in the model.

7.2 Complexity and Compilability

Clearly, top-k planning is as hard as classical planning, since it is a straightfor-
ward generalization. However, the question arises to what extend it is harder
to determine multiple plans instead of a single one. Unlike the previously
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discussed extension to classical planning, top-k planning is not a direct model
extension. The concept of compilability cannot (readily) be applied here, since
the output changes from a single plan to a set of plans, which raises a concep-
tually different decision problem. Thus, Speck, Mattmüller, and Nebel (2020)
examined the computational complexity of top-k planning and defined the
bounded top-k plans existence problem (Definition 16) to answer the question
of whether top-k planning is as difficult as classical planning.

Definition 16 (Bounded Top-k Plans Existence). Bounded top-k plans ex-
istence is the decision problem: Given a planning task Π and two natural
numbers ` and k, are there at least k different plans of length at most `?

First of all, Speck, Mattmüller, and Nebel (2020) showed that the bounded
top-k plans existence problem in general is PSPACE-complete (Theorem 6),
which is surprising because the ordinary bounded plan existence problem, i.e.,
answering the question whether only one such plan exists, is also PSPACE-
complete (Theorem 1).

Theorem 6 (Speck, Mattmüller, and Nebel 2020). Bounded top-k plans exis-
tence is PSPACE-complete.

Considering polynomially bounded plans, it turns out that the bounded
top-k plan existence decision problem is PP-hard (Gill 1977; Speck, Mattmüller,
and Nebel 2020), while the ordinary bounded plan existence problem is NP-
complete (Bylander 1994).

Theorem 7 (Speck, Mattmüller, and Nebel 2020). Bounded top-k plans exis-
tence is PP-hard if the plan length ` is polynomially bounded by the task size, i.e.,
` ≤ p(||Π||) for some polynomial p.

Theorem 7 indicates that top-k planning is much harder in practice than
ordinary classical planning. The assumption that both problems have the
same complexity when the plan length is polynomially bounded would imply a
collapse of the polynomial hierarchy at PNP (Toda 1991), which is considered
very unlikely.

7.3 Symbolic Search

Speck, Mattmüller, and Nebel (2020) propose a symbolic search approach to
top-k planning that is sound and complete. Recall that symbolic search for
classical planning is divided into two phases: 1) a reachability phase, in which
states with increasing costs are generated until a goal state is found, and 2)
a plan reconstruction phase, in which the search is regressed to reconstruct a
corresponding goal path and plan. Since symbolic search expands entire sets of
states at once, it is not unusual to find multiple goal states at once. If multiple
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(b) Reachable states generated and expanded by the proposed symbolic search approach.

Figure 7.2: Visualization of the GRIPPER planning task and the functioning of
the proposed symbolic search approach for top-k planning (Speck, Mattmüller,
and Nebel 2020).

goal states are found, then of course multiple plans are found as well. But
even if only one goal state is found, it is possible that multiple plans are found
that lead to that particular goal state. Usually, symbolic search reconstructs
and reports only one such plan, ignoring all others. Based on this observation,
Speck, Mattmüller, and Nebel (2020) show that three modifications to ordinary
symbolic search lead to a sound and complete symbolic search algorithm for
top-k planning. First, they propose that after a goal state is expanded, all
plans leading to that goal state are reconstructed. Second, during the search,
states are not closed, i.e., all newly generated states with their corresponding
reachability costs are insert in the open list without filtering them by already
expanded states, otherwise suboptimal plans may be lost. Third and finally,
the termination criterion is adjusted so that the algorithm terminates if either
k plans are found or the open list contains only states that have already been
expanded at least once and are not part of a goal path induced by a plan that
has already been found.

Example 10 illustrates the functioning of this modified symbolic search for
top-k planning. For simplicity, this example describes symbolic forward search
for a task with unit cost.
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Example 10 (Speck, Mattmüller, and Nebel 2020). Consider a unit cost
planning task with two rooms and a robot with a gripper, as shown in Fig-
ure 7.2a. The robot can move from room A to B if it carries the ball, but it
cannot return. There is a possibility to pick-up and drop the ball in each room.
The goal is to get the ball from room A to room B.

Assuming that the desired number of plans is k = 3, Figure 7.2b illus-
trates the functioning of the proposed symbolic search approach. First, all
states S0 reachable with cost 0, i.e., only the initial state, are expanded re-
sulting in the set of states S1 = {s1} reachable with cost 1. The subsequent
expansion of S1 yields the state set S2 = {s0, s2}, whose cost is 2. Note
that s0 is a part of S2, although it has been previously expanded and there-
fore would no longer be considered in ordinary symbolic search. The next
expansion yields S3 = {s1, s3} with cost 3, leading to the expansion of S3,
which contains the goal state s3. Therefore, the plan reconstruction pro-
cedure is executed that yields exactly one plan π1 = 〈pick-up,move, drop〉
visualized in red in Figure 7.2b. Since a total of 3 plans is desired, the
search continues from here until the next goal states are expanded, which
occurs with the expansion of S5. Plan reconstruction yields two plans with
a cost of 5 each, namely π2 = 〈pick-up, drop, pick-up,move, drop〉 and π3 =
〈pick-up,move, drop, pick-up, drop〉. As the desired number of plans is achieved,
the algorithm terminates with {π1, π2, π3}. However, if more plans were de-
sired, the search would continue.

Looking more closely at the reconstruction phase, we can see that we
perform an exhaustive greedy backward search using the provided perfect
heuristic of the reachability phase. Although this exhaustive search may seem
expensive, it is goal-driven due to the perfect heuristic, and each time the initial
state is reached, a new plan is created. Finally, Speck, Mattmüller, and Nebel
(2020) also define and describe the support of general operator costs, including
zero costs, and defined symbolic backward search and symbolic bidirectional
search, which can significantly improve planning performance.

Empirical Evaluation. To compare different approaches to top-k planning,
we consider k-coverage, i.e., the number of instances for which a planner
reports a set of k best plans or reports only k′ < k plans but proves that only
k′ plans exist (see Definition 15). Figure 7.3 compares the k-coverage of the
discussed symbolic search approach based on BDDs from Speck, Mattmüller,
and Nebel (2020) with other state-of-the-art approaches from the literature
on domains of the optimal track of the International Planning Competitions
1998-2018. The x-axis indicates the number of desired plans k, while the y-axis
represents the number of instances in which the corresponding k-coverage has
been reached. K? (Aljazzar and Leue 2011; Katz, Sohrabi, Udrea, and Winterer
2018) generates and processes parts of the implicit search tree as needed and
can be enhanced by a heuristic. However, the evaluation only includes K? with
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Figure 7.3: The k-coverage (number of instances for which k best plans
were found) for explicit and symbolic search algorithms on classical planning
domains (Speck, Mattmüller, and Nebel 2020).

the blind heuristic because K? is very memory intensive, so the performance
differences reported by Speck, Mattmüller, and Nebel (2020) between K? with
and without sophisticated heuristics are negligible. Forbid-k (Katz, Sohrabi,
Udrea, and Winterer 2018) is an iterative approach that searches for additional
plans through a replanning loop that forbids already found plans and preserves
all other plans. The underlying search is an orbit space search with structural
symmetries (Alkhazraji et al. 2014; Domshlak, Katz, and Shleyfman 2015) and
the LM-cut heuristic (Helmert and Domshlak 2009). The three versions of
Forbid-k considered differ in a plan reordering step, where different reordering
strategies (none, naive, and neighbor) can be used to generate multiple plans
from a single plan.

Overall, we can see that symbolic bidirectional search performs as well
as Forbid-k when only one plan (k = 1) is requested. But already for k = 2
symbolic bidirectional search performs best and for k = 4 symbolic forward
search surpasses Forbid-k, while symbolic bidirectional search already shows a
large performance advantage. Most importantly, symbolic search scales much
better to larger k than all other approaches. K? solves only six more instances
for k = 1 than for k = 10 000, due to the high memory consumption that is
the bottleneck of the approach. The replanning of Forbid-k turns out to be
too expensive when a larger number of plans is desired, resulting in a large
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performance drop. Finally, Speck, Mattmüller, and Nebel (2020) expect the
dominant performance of symbolic search to hold even for very large k until
the high number of plan reports is the limiting factor, i.e., the limiting factor is
writing the plans to disk.



CHAPTER 8
Discussion

Be happy, but never satisfied.

— Bruce Lee

As we discussed in Section 3.3, symbolic blind search, i.e., without any
heuristics, is the dominant search strategy for symbolic search, on par with
explicit heuristic search in optimal planning. For this reason, symbolic search
provides a good basis for supporting several extensions of classical planning. In
this chapter, we discuss the combination of the previously considered extensions
and how symbolic search with the introduced modifications can support this
setting. Finally, possible future work related to this thesis is discussed.

8.1 Combination of Extensions

As we have seen in the previous chapters, it is possible to extend symbolic
search to support various extensions of classical planning. A natural question
that arises is, of course, about combining these extensions, which makes in-
tuitive sense since they all capture and extend different aspects of classical
planning. The key question is whether the different enhancements to symbolic
search can be combined to support several of these planning extensions simulta-
neously. The short answer to this question is: Yes, with some minor restrictions
on the search directions. This is remarkable because the support of only one
of these features is quite rare, and the support of more than one feature is
almost inexistent in the literature on cost-optimal planning. The reason is the
same why very few planning techniques and planners support a single feature,
namely that almost all optimal planners are based on heuristic search and it is
very difficult to design admissible, informative, and fast to evaluate heuristics
that take into account the different extensions to classical planning. We will
now briefly discuss the combination of the discussed extensions for classical
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Figure 8.1: Overview of the contribution of this thesis in terms of extending
symbolic search to support different expressive extensions of classical planning.

planning and how and why the proposed modifications to symbolic search can
support all of these extensions simultaneously.

Model Extensions. Let us first focus on the three discussed model extensions
that result in oversubscription planning with axioms and state-dependent action
costs. This planning formalism is simply defined by combining all the features
of the extension and allowing the state-dependent cost function and the utility
function to take into account derived variables D such that the cost function of
an operator o is given by Co : SE → N0 and the utility function U : SE → N0.
This makes it possible to concisely encode complex state-dependent action cost
functions and state utility functions. In the empirical evaluation of Chapter 5,
we have already mentioned that derived variables can be used in a state-
dependent action cost function in the Power Supply Restoration (PSR) domain
(Hoffmann, Edelkamp, et al. 2006; Thiébaux and Cordier 2001, 2013), to
encode whether certain parts of the power system are energized. A closer look,
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however, reveals an interesting connection between these model extensions.
While derived variables in the cost or utility function can lead to a simple and
concise representation, it might be possible to simulate the evaluation of the
values of the derived variables by the cost or utility function, which could make
the consideration of derived variables in the cost or utility function obsolete.
Moreover, it might be possible to simplify a complex cost or utility function by
introducing new derived variables and thus shifting the complexity into the
computation of the derived variables. This shows that these extensions are
closely related and a more detailed analysis of the connection is an exciting
question for future work (Section 8.2).

All proposed symbolic encodings of axioms and derived variables in the
context of symbolic search (Chapter 4) allow derived variables to exist in the
domain of operator cost functions and utility functions. Thus, the proposed
enhancements to symbolic search can be directly used for oversubscription
planning with axioms and state-dependent action costs. This is especially
true for the dominant axiom encoding strategy, symbolic translation, in which
each derived variable is replaced by its primary representation (Definition 9).
However, as Figure 8.1 illustrates, in oversubscription planning tasks, i.e.,
in the presence of utilities, only forward symbolic search can be performed,
since it is not clear how to perform backward or bidirectional symbolic search
efficiently.

Top-k Planning with Model Extensions. The search for the best k plans is
independent of the support of axioms and state-dependent action costs and
can be easily combined. However, if one combines oversubscription planning
and top-k planning, the question arises which are the best k plans. Although
this question has never been answered in the literature, it is natural to rank
plans first by utility and then by cost, i.e., a plan π is better than a plan π′ iff
1) U(π) > U(π′) or 2) U(π) = U(π′) and cost(π) < cost(π′). And indeed, this
can be supported with minor modifications to the proposed symbolic search
approach by maintaining not only the states with the best utility found so
far, but all relevant ones and executing exhaustive plan extraction as done in
symbolic search for top-k planning (Figure 8.1).

Overall, the proposed extension of symbolic search yields an optimal, sound,
and complete approach to top-k oversubscription planning with axioms and state-
dependent action costs. As Figure 8.1 illustrates, this not only enhances the
applicability and state of the art of symbolic search for classical planning with
expressive extensions, but also provides the first planner that can support
several of these extensions at once.7 Finally, the proposed planning algorithm
that supports the interaction of all these features does not suffer from its
generality, because if certain features are not present, the approach becomes
standard symbolic search.

7Available online: https://github.com/speckdavid/symk

https://github.com/speckdavid/symk
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8.2 Future Work

While we have highlighted some future challenges and research in the individ-
ual chapters, here we focus on future research directions related to symbolic
(heuristic) search and planning with expressive extensions in general.

We have seen in this thesis different types of decision diagrams such as
EVMDDs, ADDs and BDDs used in the context of symbolic search for classical
planning. A more detailed comparison in theory and practice could provide
more insight into when to use which decision diagrams. Other types of de-
cision diagrams such as Functional Decision Diagrams (Kebschull, Schubert,
and Rosenstiel 1992) or Kronecker Functional Decision Diagrams (Drechsler
and Becker 1998b) could also lead to an even more concise and efficient
representation.

Throughout this thesis, we have assumed a fixed static variable order. Since
the order of the variables plays an important role in the efficiency of symbolic
search, as the size of the decision diagrams strongly depends on the chosen
order of the variables, it is important to find good orders. While it is known that
the computation of an optimal order for decision diagrams is co-NP-complete
(Bryant 1986), it is still a challenging question whether and how to find good
orders in practice (Kissmann and Hoffmann 2013, 2014). Moreover, dynamic
reordering techniques (Rudell 1993) are used in other fields, such as model
checking (Yang et al. 1998) or logic synthesis (Scholl et al. 1999), which have
been explored up to now only sparsely in planning (Kissmann, Edelkamp, and
Hoffmann 2014; Kissmann and Hoffmann 2014).

The efficient integration of heuristics into symbolic search is still an open
research task. We believe that the main goal should be to keep the decision
diagrams involved as small as possible. Fišer, Torralba, and Hoffmann (2021)
introduced operator potentials based on potential heuristics (Pommerening
et al. 2015), which seem to provide concise representation in symbolic forward
search, while efficiently pruning states based on their heuristic values. More
work certainly needs to be done here to better understand the search behavior
of symbolic heuristic search. In particular, it is interesting to see if it is possible
to find heuristics that give any size guarantees for the decision diagrams
involved, and if and how the results can be generalized to symbolic bidirectional
heuristic search.

Considering the discussed extensions of classical planning, an in-depth the-
oretical and empirical evaluation of the combination of several such extensions
and the symbolic search approach presented for this purpose is certainly a
promising research direction. In particular, it is interesting to examine the
relationship between different extensions. It might be possible that one exten-
sion can be compiled away (with small overhead) in the presence of another
extension. Moreover, several of these extensions are not yet covered by more
expressive planning formalisms, such as fully observable nondeterministic
planning (Cimatti et al. 2003), partially observable nondeterministic planning
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(Bertoli et al. 2006; Speck, Ortlieb, and Mattmüller 2015), or hierarchical task
network planning (Erol, Hendler, and Nau 1996; Geier and Bercher 2011).
An analysis of how and to what extent all these features can enhance these
planning formalisms is an important future line of research, and whether the
proposed ideas can also be used for symbolic search approaches for these
settings (Behnke and Speck 2021; Bertoli et al. 2006; Kissmann and Edelkamp
2009).





CHAPTER 9
Conclusion

Perhaps the best test of [an agent’s] intelligence is
[its] capacity for making a summary.

— Lytton Strachey

We theoretically and empirically evaluated symbolic search for cost-optimal
planning with expressive extensions. First, we analyzed the search behavior of
symbolic heuristic search in form of BDDA? and revealed an unknown or at
least often overlooked fundamental problem: We showed that using a heuristic
does not always improve the search performance of BDDA?. In general, even
the perfect heuristic can deteriorate search performance exponentially. Second,
we analyzed classical planning with different expressive extensions, such as
planning with axioms and derived variables, planning with state-dependent
action costs, oversubscription planning, and top-k planning. The discussed
and presented results on the computational complexity and compilability of
these planning formalisms show that native support for the relevant planning
extensions is needed to solve many real-world problems. Based on this obser-
vation, we proposed symbolic blind search to solve such planning formalisms
with expressive extensions. More specifically, we have proposed symbolic
search approaches that provide optimal, sound, and complete algorithms for
these planning formalisms. Our empirical evaluations show that the presented
symbolic search approaches perform favorably in all these planning settings
compared with other state-of-the-art approaches. Finally, we analyzed the
combination of all these classical planning extensions, i.e., top-k oversubscrip-
tion planning with axioms and state-dependent action costs, and show how
symbolic search with the introduced modifications can support this planning
formalism.
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